Technology should bring people closer together, not create walls. Being able to communicate and connect with friends and family should be easy regardless of the phone they use. That’s why Android has been building experiences that help you stay connected across platforms.
As part of our efforts to continue to make cross-platform communication more seamless for users, we've made Quick Share interoperable with AirDrop, allowing for two-way file sharing between Android and iOS devices, starting with the Pixel 10 Family. This new feature makes it possible to quickly share your photos, videos, and files with people you choose to communicate with, without worrying about the kind of phone they use.
Most importantly, when you share personal files and content, you need to trust that it stays secure. You can share across devices with confidence knowing we built this feature with security at its core, protecting your data with strong safeguards that have been tested by independent security experts.
We built Quick Share’s interoperability support for AirDrop with the same rigorous security standards that we apply to all Google products. Our approach to security is proactive and deeply integrated into every stage of the development process. This includes:
This Secure by Design philosophy ensures that all of our products are not just functional but also fundamentally secure.
This feature is also protected by a multi-layered security approach to ensure a safe sharing experience from end-to-end, regardless of what platform you’re on.
A key element of our security strategy for the interoperability layer between Quick Share and AirDrop is the use of the memory-safe Rust programming language. Recognized by security agencies around the world, including the NSA and CISA, Rust is widely considered the industry benchmark for building secure systems because it eliminates entire classes of memory-safety vulnerabilities by design.
Rust is already a cornerstone of our broader initiative to eliminate memory safety bugs across Android. Its selection for this feature was deliberate, driven by the unique security challenges of cross-platform communication that demanded the most robust protections for memory safety.
The core of this feature involves receiving and parsing data sent over a wireless protocol from another device. Historically, when using a memory-unsafe language, bugs in data parsing logic are one of the most common sources of high-severity security vulnerabilities. A malformed data packet sent to a parser written in a memory-unsafe language can lead to buffer overflows and other memory corruption bugs, creating an opportunity for code execution.
This is precisely where Rust provides a robust defense. Its compiler enforces strict ownership and borrowing rules at compile time, which guarantees memory safety. Rust removes entire classes of memory-related bugs. This means our implementation is inherently resilient against attackers attempting to use maliciously crafted data packets to exploit memory errors.
To ensure a seamless experience for both Android and iOS users, Quick Share currently works with AirDrop's "Everyone for 10 minutes" mode. This feature does not use a workaround; the connection is direct and peer-to-peer, meaning your data is never routed through a server, shared content is never logged, and no extra data is shared. As with "Everyone for 10 minutes" mode on any device when you’re sharing between non-contacts, you can ensure you're sharing with the right person by confirming their device name on your screen with them in person.
This implementation using "Everyone for 10 minutes” mode is just the first step in seamless cross-platform sharing, and we welcome the opportunity to work with Apple to enable “Contacts Only” mode in the future.
After conducting our own secure product development, internal threat modeling, privacy reviews, and red team penetration tests, we engaged with NetSPI, a leading third-party penetration testing firm, to further validate the security of this feature and conduct an independent security assessment. The assessment found the interoperability between Quick Share and AirDrop is secure, is “notably stronger” than other industry implementations and does not leak any information.
Based on these internal and external assessments, we believe our implementation provides a strong security foundation for cross-platform file sharing for both Android and iOS users. We will continue to evaluate and enhance the implementation’s security in collaboration with additional third-party partners.
To complement this deep technical audit, we also sought expert third-party perspective on our approach from Dan Boneh, a renowned security expert and professor at Stanford University:
“Google’s work on this feature, including the use of memory safe Rust for the core communications layer, is a strong example of how to build secure interoperability, ensuring that cross-platform information sharing remains safe. I applaud the effort to open more secure information sharing between platforms and encourage Google and Apple to work together more on this."
This is just the first step as we work to improve the experience and expand it to more devices. We look forward to continuing to work with industry partners to make connecting and communicating across platforms a secure, seamless experience for all users.
Last year, we wrote about why a memory safety strategy that focuses on vulnerability prevention in new code quickly yields durable and compounding gains. This year we look at how this approach isn’t just fixing things, but helping us move faster.
The 2025 data continues to validate the approach, with memory safety vulnerabilities falling below 20% of total vulnerabilities for the first time.
Updated data for 2025. This data covers first-party and third-party (open source) code changes to the Android platform across C, C++, Java, Kotlin, and Rust. This post is published a couple of months before the end of 2025, but Android’s industry-standard 90-day patch window means that these results are very likely close to final. We can and will accelerate patching when necessary.
We adopted Rust for its security and are seeing a 1000x reduction in memory safety vulnerability density compared to Android’s C and C++ code. But the biggest surprise was Rust's impact on software delivery. With Rust changes having a 4x lower rollback rate and spending 25% less time in code review, the safer path is now also the faster one.
In this post, we dig into the data behind this shift and also cover:
Developing an operating system requires the low-level control and predictability of systems programming languages like C, C++, and Rust. While Java and Kotlin are important for Android platform development, their role is complementary to the systems languages rather than interchangeable. We introduced Rust into Android as a direct alternative to C and C++, offering a similar level of control but without many of their risks. We focus this analysis on new and actively developed code because our data shows this to be an effective approach.
When we look at development in systems languages (excluding Java and Kotlin), two trends emerge: a steep rise in Rust usage and a slower but steady decline in new C++.
Net lines of code added: Rust vs. C++, first-party Android code.This chart focuses on first-party (Google-developed) code (unlike the previous chart that included all first-party and third-party code in Android.) We only include systems languages, C/C++ (which is primarily C++), and Rust.
The chart shows that the volume of new Rust code now rivals that of C++, enabling reliable comparisons of software development process metrics. To measure this, we use the DORA1 framework, a decade-long research program that has become the industry standard for evaluating software engineering team performance. DORA metrics focus on:
Cross-language comparisons can be challenging. We use several techniques to ensure the comparisons are reliable.
Code review is a time-consuming and high-latency part of the development process. Reworking code is a primary source of these costly delays. Data shows that Rust code requires fewer revisions. This trend has been consistent since 2023. Rust changes of a similar size need about 20% fewer revisions than their C++ counterparts.
In addition, Rust changes currently spend about 25% less time in code review compared to C++. We speculate that the significant change in favor of Rust between 2023 and 2024 is due to increased Rust expertise on the Android team.
While less rework and faster code reviews offer modest productivity gains, the most significant improvements are in the stability and quality of the changes.
Stable and high-quality changes differentiate Rust. DORA uses rollback rate for evaluating change stability. Rust's rollback rate is very low and continues to decrease, even as its adoption in Android surpasses C++.
For medium and large changes, the rollback rate of Rust changes in Android is ~4x lower than C++. This low rollback rate doesn't just indicate stability; it actively improves overall development throughput. Rollbacks are highly disruptive to productivity, introducing organizational friction and mobilizing resources far beyond the developer who submitted the faulty change. Rollbacks necessitate rework and more code reviews, can also lead to build respins, postmortems, and blockage of other teams. Resulting postmortems often introduce new safeguards that add even more development overhead.
In a self-reported survey from 2022, Google software engineers reported that Rust is both easier to review and more likely to be correct. The hard data on rollback rates and review times validates those impressions.
Historically, security improvements often came at a cost. More security meant more process, slower performance, or delayed features, forcing trade-offs between security and other product goals. The shift to Rust is different: we are significantly improving security and key development efficiency and product stability metrics.
With Rust support now mature for building Android system services and libraries, we are focused on bringing its security and productivity advantages elsewhere.
These examples highlight Rust's role in reducing security risks, but memory-safe languages are only one part of a comprehensive memory safety strategy. We continue to employ a defense-in-depth approach, the value of which was clearly demonstrated in a recent near-miss.
We recently avoided shipping our very first Rust-based memory safety vulnerability: a linear buffer overflow in CrabbyAVIF. It was a near-miss. To ensure the patch received high priority and was tracked through release channels, we assigned it the identifier CVE-2025-48530. While it’s great that the vulnerability never made it into a public release, the near-miss offers valuable lessons. The following sections highlight key takeaways from our postmortem.
A key finding is that Android’s Scudo hardened allocator deterministically rendered this vulnerability non-exploitable due to guard pages surrounding secondary allocations. While Scudo is Android’s default allocator, used on Google Pixel and many other devices, we continue to work with partners to make it mandatory. In the meantime, we will issue CVEs of sufficient severity for vulnerabilities that could be prevented by Scudo.
In addition to protecting against overflows, Scudo’s use of guard pages helped identify this issue by changing an overflow from silent memory corruption into a noisy crash. However, we did discover a gap in our crash reporting: it failed to clearly show that the crash was a result of an overflow, which slowed down triage and response. This has been fixed, and we now have a clear signal when overflows occur into Scudo guard pages.
Operating system development requires unsafe code, typically C, C++, or unsafe Rust (for example, for FFI and interacting with hardware), so simply banning unsafe code is not workable. When developers must use unsafe, they should understand how to do so soundly and responsibly
To that end, we are adding a new deep dive on unsafe code to our Comprehensive Rust training. This new module, currently in development, aims to teach developers how to reason about unsafe Rust code, soundness and undefined behavior, as well as best practices like safety comments and encapsulating unsafe code in safe abstractions.
Better understanding of unsafe Rust will lead to even higher quality and more secure code across the open source software ecosystem and within Android. As we'll discuss in the next section, our unsafe Rust is already really quite safe. It’s exciting to consider just how high the bar can go.
This near-miss inevitably raises the question: "If Rust can have memory safety vulnerabilities, then what’s the point?"
The point is that the density is drastically lower. So much lower that it represents a major shift in security posture. Based on our near-miss, we can make a conservative estimate. With roughly 5 million lines of Rust in the Android platform and one potential memory safety vulnerability found (and fixed pre-release), our estimated vulnerability density for Rust is 0.2 vuln per 1 million lines (MLOC).
Our historical data for C and C++ shows a density of closer to 1,000 memory safety vulnerabilities per MLOC. Our Rust code is currently tracking at a density orders of magnitude lower: a more than 1000x reduction.
Memory safety rightfully receives significant focus because the vulnerability class is uniquely powerful and (historically) highly prevalent. High vulnerability density undermines otherwise solid security design because these flaws can be chained to bypass defenses, including those specifically targeting memory safety exploits. Significantly lowering vulnerability density does not just reduce the number of bugs; it dramatically boosts the effectiveness of our entire security architecture.
The primary security concern regarding Rust generally centers on the approximately 4% of code written within unsafe{} blocks. This subset of Rust has fueled significant speculation, misconceptions, and even theories that unsafe Rust might be more buggy than C. Empirical evidence shows this to be quite wrong.
unsafe{}
Our data indicates that even a more conservative assumption, that a line of unsafe Rust is as likely to have a bug as a line of C or C++, significantly overestimates the risk of unsafe Rust. We don’t know for sure why this is the case, but there are likely several contributing factors:
Historically, we had to accept a trade-off: mitigating the risks of memory safety defects required substantial investments in static analysis, runtime mitigations, sandboxing, and reactive patching. This approach attempted to move fast and then pick up the pieces afterwards. These layered protections were essential, but they came at a high cost to performance and developer productivity, while still providing insufficient assurance.
While C and C++ will persist, and both software and hardware safety mechanisms remain critical for layered defense, the transition to Rust is a different approach where the more secure path is also demonstrably more efficient. Instead of moving fast and then later fixing the mess, we can move faster while fixing things. And who knows, as our code gets increasingly safe, perhaps we can start to reclaim even more of that performance and productivity that we exchanged for security, all while also improving security.
Thank you to the following individuals for their contributions to this post:
Finally, a tremendous thank you to the Android Rust team, and the entire Android organization for your relentless commitment to engineering excellence and continuous improvement.
The DevOps Research and Assessment (DORA) program is published by Google Cloud. ↩
For years, Android has been on the frontlines in the battle against scammers, using the best of Google AI to build proactive, multi-layered protections that can anticipate and block scams before they reach you. Android’s scam defenses protect users around the world from over 10 billion suspected malicious calls and messages every month2. In addition, Google continuously performs safety checks to maintain the integrity of the RCS service. In the past month alone, this ongoing process blocked over 100 million suspicious numbers from using RCS, stopping potential scams before they could even be sent.
To show how our scam protections work in the real world, we asked users and independent security experts to compare how well Android and iOS protect you from these threats. We're also releasing a new report that explains how modern text scams are orchestrated, helping you understand the tactics fraudsters use and how to spot them.
Survey shows Android users’ confidence in scam protections
Google and YouGov3 surveyed 5,000 smartphone users across the U.S., India, and Brazil about their scam experiences. The findings were clear: Android users reported receiving fewer scam texts and felt more confident that their device was keeping them safe.
YouGov study findings on users’ experience with scams on Android and iOS
In a recent evaluation by Counterpoint Research5, a global technology market research firm, Android smartphones were found to have the most AI-powered protections. The independent study compared the latest Pixel, Samsung, Motorola, and iPhone devices, and found that Android provides comprehensive AI-driven safeguards across ten key protection areas, including email protections, browsing protections, and on-device behavioral protections. By contrast, iOS offered AI-powered protections in only two categories. You can see the full comparison in the visual below.
Cybersecurity firm Leviathan Security Group conducted a funded evaluation6 of scam and fraud protection on the iPhone 17, Moto Razr+ 2025, Pixel 10 Pro, and Samsung Galaxy Z Fold 7. Their analysis found that Android smartphones, led by the Pixel 10 Pro, provide the highest level of default scam and fraud protection.The report particularly noted Android's robust call screening, scam detection, and real-time scam warning authentication capabilities as key differentiators. Taken together, these independent expert assessments conclude that Android’s AI-driven safeguards provide more comprehensive and intelligent protection against mobile scams.
Why Android users see fewer scams
Android’s proactive protections work across the platform to help you stay ahead of threats with the best of Google AI.
Here’s how they work:
These safeguards are built directly into the core of Android, alongside other features like real-time app scanning in Google Play Protect and enhanced Safe Browsing in Chrome using LLMs. With Android, you can trust that you have intelligent, multi-layered protection against scams working for you.
Android is always evolving to keep you one step ahead of scams
In a world of evolving digital threats, you deserve to feel confident that your phone is keeping you safe. That’s why we use the best of Google AI to build intelligent protections that are always improving and work for you around the clock, so you can connect, browse, and communicate with peace of mind.
See these protections in action in our new infographic and learn more about phone call scams in our 2025 Phone by Google Scam Report.
1: Data from Global Anti-Scam Alliance, October 2025 ↩
2: This total comprises all instances where a message or call was proactively blocked or where a user was alerted to potential spam or scam activity. ↩
3: Google/YouGov survey, July-August, n=5,100 (1,700 each in the US, Brazil and India), with adults who use their smartphones daily and who have been exposed to a scam or fraud attempt on their smartphone. Survey data have been weighted to smartphone population adults in each country. ↩
4: Among users who use the default texting app on their smartphone ↩
5: Google/Counterpoint Research, “Assessing the State of AI-Powered Mobile Security”, Oct. 2025; based on comparing the Pixel 10 Pro, iPhone 17 Pro, Samsung Galaxy S25 Ultra, OnePlus 13, Motorola Razr+ 2025. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries. ↩
6: Google/Leviathan Security Group, “October 2025 Mobile Platform Security & Fraud Prevention Assessment”, Oct. 2025; based on comparing the Pixel 10 Pro, iPhone 17 Pro, Samsung Galaxy Z Fold 7 and Motorola Razr+ 2025. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries. ↩ ↩
7: Accuracy may vary. Availability varies. ↩ ↩ ↩
Today marks a watershed moment and new benchmark for open-source security and the future of consumer electronics. Google is proud to announce that protected KVM (pKVM), the hypervisor that powers the Android Virtualization Framework, has officially achieved SESIP Level 5 certification. This makes pKVM the first software security system designed for large-scale deployment in consumer electronics to meet this assurance bar.
The implications for the future of secure mobile technology are profound. With this level of security assurance, Android is now positioned to securely support the next generation of high-criticality isolated workloads. This includes vital features, such as on-device AI workloads that can operate on ultra-personalized data, with the highest assurances of privacy and integrity.
This certification required a hands-on evaluation by Dekra, a globally recognized cybersecurity certification lab, which conducted an evaluation against the TrustCB SESIP scheme, compliant to EN-17927. Achieving Security Evaluation Standard for IoT Platforms (SESIP) Level 5 is a landmark because it incorporates AVA_VAN.5, the highest level of vulnerability analysis and penetration testing under the ISO 15408 (Common Criteria) standard. A system certified to this level has been evaluated to be resistant to highly skilled, knowledgeable, well-motivated, and well-funded attackers who may have insider knowledge and access.
This certification is the cornerstone of the next-generation of Android’s multi-layered security strategy. Many of the TEEs (Trusted Execution Environments) used in the industry have not been formally certified or have only achieved lower levels of security assurance. This inconsistency creates a challenge for developers looking to build highly critical applications that require a robust and verifiable level of security. The certified pKVM changes this paradigm entirely. It provides a single, open-source, and exceptionally high-quality firmware base that all device manufacturers can build upon.
Looking ahead, Android device manufacturers will be required to use isolation technology that meets this same level of security for various security operations that the device relies on. Protected KVM ensures that every user can benefit from a consistent, transparent, and verifiably secure foundation.
This achievement represents just one important aspect of the immense, multi-year dedication from the Linux and KVM developer communities and multiple engineering teams at Google developing pKVM and AVF. We look forward to seeing the open-source community and Android ecosystem continue to build on this foundation, delivering a new era of high-assurance mobile technology for users.
Android’s intelligent protections keep you safe from everyday dangers. Our dedication to your security is validated by security experts, who consistently rank top Android devices highest in security, and score Android smartphones, led by the Pixel 9 Pro, as leaders in anti-fraud efficacy.Android is always developing new protections to keep you, your device, and your data safe. Today, we’re announcing new features and enhancements that build on our industry-leading protections to help keep you safe from scams, fraud, and theft on Android.
Our research shows that phone scammers often try to trick people into performing specific actions to initiate a scam, like changing default device security settings or granting elevated permissions to an app. These actions can result in spying, fraud, and other abuse by giving an attacker deeper access to your device and data. To combat phone scammers, we’re working to block specific actions and warn you of these sophisticated attempts. This happens completely on device and is applied only with conversations with non-contacts.
Android’s new in-call protections1 provide an additional layer of defense, preventing you from taking risky security actions during a call like:
And if you’re screen sharing during a phone call, Android will now automatically prompt you to stop sharing at the end of a call. These protections help safeguard you against scammers that attempt to gain access to sensitive information to conduct fraud.
When you launch a participating banking app while screen sharing with an unknown contact, your Android device will warn you about the potential dangers and give you the option to end the call and to stop screen sharing with one tap.
This feature will be enabled automatically for participating banking apps whenever you're on a phone call with an unknown contact on Android 11+ devices. We are working with UK banks Monzo, NatWest and Revolut to pilot this feature for their customers in the coming weeks and will assess the results of the pilot ahead of a wider roll out.
We recently launched AI-powered Scam Detection in Google Messages and Phone by Google to protect you from conversational scams that might sound innocent at first, but turn malicious and can lead to financial loss or data theft. When Scam Detection discovers a suspicious conversation pattern, it warns you in real-time so you can react before falling victim to a costly scam. AI-powered Scam Detection is always improving to help keep you safe while also keeping your privacy in mind. With Google’s advanced on-device AI, your conversations stay private to you. All message processing remains on-device and you’re always in control. You can turn off Spam Protection, which includes Scam Detection, in your Google Messages at any time.
Prior to targeting conversational scams, Scam Detection in Google Messages focused on analyzing and detecting package delivery and job seeking scams. We’ve now expanded our detections to help protect you from a wider variety of sophisticated scams including:
To help protect you from scammers who try to impersonate someone you know, we’re launching a helpful tool called Key Verifier. The feature allows you and the person you’re messaging to verify the identity of the other party through public encryption keys, protecting your end-to-end encrypted messages in Google Messages. By verifying contact keys in your Google Contacts app (through a QR code scanning or number comparison), you can have an extra layer of assurance that the person on the other end is genuine and that your conversation is private with them.
Key Verifier provides a visual way for you and your contact to quickly confirm that your secret keys match, strengthening your confidence that you’re communicating with the intended recipient and not a scammer. For example, if an attacker gains access to a friend’s phone number and uses it on another device to send you a message – which can happen as a result of a SIM swap attack – their contact's verification status will be marked as no longer verified in the Google Contacts app, suggesting your friend’s account may be compromised or has been changed. Key Verifier will launch later this summer in Google Messages on Android 10+ devices.
Physical device theft can lead to financial fraud and data theft, with the value of your banking and payment information many times exceeding the value of your phone. This is one of the reasons why last year we launched the mobile industry’s most comprehensive suite of theft protection features to protect you before, during, and after a theft. Since launch, our theft protection features have helped protect data on hundreds of thousands of devices that may have fallen into the wrong hands. This includes devices that were locked by Remote Lock or Theft Detection Lock and remained locked for over 48 hours.
Most recently, we launched Identity Check for Pixel and Samsung One UI 7 devices, providing an extra layer of security even if your PIN or password is compromised. This protection will also now be available from more device manufacturers on supported devices that upgrade to Android 16.
Coming later this year, we’re further hardening Factory Reset protections, which will restrict all functionalities on devices that are reset without the owner’s authorization. You'll also gain more control over our Remote Lock feature with the addition of a security challenge question, helping to prevent unauthorized actions.
We’re also enhancing your security against thieves in Android 16 by providing more protection for one-time passwords that are received when your phone is locked. In higher risk scenarios2, Android will hide one-time passwords on your lock screen, ensuring that only you can see them after unlocking your device.
Protecting users who need heightened security has been a long-standing commitment at Google, which is why we have our Advanced Protection Program that provides Google’s strongest protections against targeted attacks.To enhance these existing device defenses, Android 16 extends Advanced Protection with a device-level security setting for Android users. Whether you’re an at-risk individual – such as a journalist, elected official, or public figure – or you just prioritize security, Advanced Protection gives you the ability to activate Google’s strongest security for mobile devices, providing greater peace of mind that you’re protected against the most sophisticated threats.
Advanced Protection is available on devices with Android 16. Learn more in our blog.
One way malicious developers try to trick people is by hiding or changing their app icon, making unsafe apps more difficult to find and remove. Now, Google Play Protect live threat detection will catch apps and alert you when we detect this deceptive behavior. This feature will be available to Google Pixel 6+ and a selection of new devices from other manufacturers in the coming months.
Google Play Protect always checks each app before it gets installed on your device, regardless of the install source. It conducts real-time scanning of an app, enhanced by on-device machine learning, when users try to install an app that has never been seen by Google Play Protect to help detect emerging threats.
We’ve made Google Play Protect’s on-device capabilities smarter to help us identify more malicious applications even faster to keep you safe. Google Play Protect now uses a new set of on-device rules to specifically look for text or binary patterns to quickly identify malware families. If an app shows these malicious patterns, we can alert you before you even install it. And to keep you safe from new and emerging malware and their variants, we will update these rules frequently for better classification over time.
This update to Google Play Protect is now available globally for all Android users with Google Play services.
In addition to new features that come in numbered Android releases, we're constantly enhancing your protection on Android through seamless Google Play services updates and other improvements, ensuring you benefit from the latest security advancements continuously. This allows us to rapidly deploy critical defenses and keep you ahead of emerging threats, making your Android experience safer every day.Through close collaboration with our partners across the Android ecosystem and the broader security community, we remain focused on bringing you security enhancements and innovative new features to help keep you safe.
In-call protection for disabling Google Play Protect is available on Android 6+ devices. Protections for sideloading an app and turning on accessibility permissions are available on Android 16 devices. ↩
When a user’s device is not connected to Wi-Fi and has not been recently unlocked ↩
Advanced Protection ensures all of Android's highest security features are enabled and are seamlessly working together to safeguard you against online attacks, harmful apps, and data risks. Advanced Protection activates a powerful array of security features, combining new capabilities with pre-existing ones that have earned top ratings in security comparisons, all designed to protect your device across several critical areas.We're also introducing innovative, Android-specific features, such as Intrusion Logging. This industry-first feature securely backs up device logs in a privacy-preserving and tamper-resistant way, accessible only to the user. These logs enable a forensic analysis if a device compromise is ever suspected.
Advanced Protection gives users:
Advanced Protection manages the following existing and new security features for your device, ensuring they are activated and cannot be disabled across critical protection areas:
With the release of Android 16, users who choose to activate Advanced Protection will gain immediate access to a core suite of enhanced security features. Additional Advanced Protection features like Intrusion Logging, USB protection, the option to disable auto-reconnect to insecure networks, and integration with Scam Detection for Phone by Google will become available later this year.
We are committed to continuously expanding the security and privacy capabilities within Advanced Protection, so users can benefit from the best of Android’s powerful security features.
Google has been at the forefront of protecting users from the ever-growing threat of scams and fraud with cutting-edge technologies and security expertise for years. In 2024, scammers used increasingly sophisticated tactics and generative AI-powered tools to steal more than $1 trillion from mobile consumers globally, according to the Global Anti-Scam Alliance. And with the majority of scams now delivered through phone calls and text messages, we’ve been focused on making Android’s safeguards even more intelligent with powerful Google AI to help keep your financial information and data safe.
Today, we’re launching two new industry-leading AI-powered scam detection features for calls and text messages, designed to protect users from increasingly complex and damaging scams. These features specifically target conversational scams, which can often appear initially harmless before evolving into harmful situations. To enhance our detection capabilities, we partnered with financial institutions around the world to better understand the latest advanced and most common scams their customers are facing. For example, users are experiencing more conversational text scams that begin innocently, but gradually manipulate victims into sharing sensitive data, handing over funds, or switching to other messaging apps. And more phone calling scammers are using spoofing techniques to hide their real numbers and pretend to be trusted companies.
Traditional spam protections are focused on protecting users before the conversation starts, and are less effective against these latest tactics from scammers that turn dangerous mid-conversation and use social engineering techniques. To better protect users, we invested in new, intelligent AI models capable of detecting suspicious patterns and delivering real-time warnings over the course of a conversation, all while prioritizing user privacy.
We’re building on our enhancements to existing Spam Protection in Google Messages that strengthen defenses against job and delivery scams, which are continuing to roll out to users. We’re now introducing Scam Detection to detect a wider range of fraudulent activities. Scam Detection in Google Messages uses powerful Google AI to proactively address conversational scams by providing real-time detection even after initial messages are received. When the on-device AI detects a suspicious pattern in SMS, MMS, and RCS messages, users will now get a message warning of a likely scam with an option to dismiss or report and block the sender.
As part of the Spam Protection setting, Scam Detection on Google Messages is on by default and only applies to conversations with non-contacts. Your privacy is protected with Scam Detection in Google Messages, with all message processing remaining on-device. Your conversations remain private to you; if you choose to report a conversation to help reduce widespread spam, only sender details and recent messages with that sender are shared with Google and carriers. You can turn off Spam Protection, which includes Scam Detection, in your Google Messages at any time.
Scam Detection in Google Messages is launching in English first in the U.S., U.K. and Canada and will expand to more countries soon.
More than half of Americans reported receiving at least one scam call per day in 2024. To combat the rise of sophisticated conversational scams that deceive victims over the course of a phone call, we introduced Scam Detection late last year to U.S.-based English-speaking Phone by Google public beta users on Pixel phones.
We use AI models processed on-device to analyze conversations in real-time and warn users of potential scams. If a caller, for example, tries to get you to provide payment via gift cards to complete a delivery, Scam Detection will alert you through audio and haptic notifications and display a warning on your phone that the call may be a scam.
During our limited beta, we analyzed calls with Gemini Nano, Google’s built-in, on-device foundation model, on Pixel 9 devices and used smaller, robust on-device machine-learning models for Pixel 6+ users. Our testing showed that Gemini Nano outperformed other models, so as a result, we're currently expanding the availability of the beta to bring the most capable Scam Detection to all English-speaking Pixel 9+ users in the U.S.
Similar to Scam Detection in messaging, we built this feature to protect your privacy by processing everything on-device. Call audio is processed ephemerally and no conversation audio or transcription is recorded, stored on the device, or sent to Google or third parties. Scam Detection in Phone by Google is off by default to give users control over this feature, as phone call audio is more ephemeral compared to messages, which are stored on devices. Scam Detection only applies to calls that could potentially be scams, and is never used during calls with your contacts. If enabled, Scam Detection will beep at the start and during the call to notify participants the feature is on. You can turn off Scam Detection at any time, during an individual call or for all future calls.
According to our research and a Scam Detection beta user survey, these types of alerts have already helped people be more cautious on the phone, detect suspicious activity, and avoid falling victim to conversational scams.
With AI-powered innovations like Scam Detection in Messages and Phone by Google, we're giving you more tools to stay one step ahead of bad actors. We're constantly working with our partners across the Android ecosystem to help bring new security features to even more users. Together, we’re always working to keep you safe on Android.
Based on third-party research funded by Google LLC in Feb 2025 comparing the Pixel 9 Pro, iPhone 16 Pro, Samsung S24+ and Xiaomi 14 Ultra. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries. ↩
Android and Google Play comprise a vibrant ecosystem with billions of users around the globe and millions of helpful apps. Keeping this ecosystem safe for users and developers remains our top priority. However, like any flourishing ecosystem, it also attracts its share of bad actors. That’s why every year, we continue to invest in more ways to protect our community and fight bad actors, so users can trust the apps they download from Google Play and developers can build thriving businesses.
Last year, those investments included AI-powered threat detection, stronger privacy policies, supercharged developer tools, new industry-wide alliances, and more. As a result, we prevented 2.36 million policy-violating apps from being published on Google Play and banned more than 158,000 bad developer accounts that attempted to publish harmful apps.
But that was just the start. For more, take a look at our recent highlights from 2024:
That’s enabled us to stop more bad apps than ever from reaching users through the Play Store, protecting users from harmful or malicious apps before they can cause any damage.
To protect user privacy, we’re working with developers to reduce unnecessary access to sensitive data. In 2024, we prevented 1.3 million apps from getting excessive or unnecessary access to sensitive user data. We also required apps to be more transparent about how they handle user information by launching new developer requirements and a new “Data deletion” option for apps that support user accounts and data collection. This helps users manage their app data and understand the app’s deletion practices, making it easier for Play users to delete data collected from third-party apps.
We also worked to ensure that apps use the strongest and most up-to-date privacy and security capabilities Android has to offer. Every new version of Android introduces new security and privacy features, and we encourage developers to embrace these advancements as soon as possible. As a result of partnering closely with developers, over 91% of app installs on the Google Play Store now use the latest protections of Android 13 or newer. Safeguarding apps from scams and fraud is an ongoing battle for developers. The Play Integrity API allows developers to check if their apps have been tampered with or are running in potentially compromised environments, helping them to prevent abuse like fraud, bots, cheating, and data theft. Play Integrity API and Play’s automatic protection helps developers ensure that users are using the official Play version of their app with the latest security updates. Apps using Play integrity features are seeing 80% lower usage from unverified and untrusted sources on average.
We’re also constantly working to improve the safety of apps on Play at scale, such as with the Google Play SDK Index. This tool offers insights and data to help developers make more informed decisions about the safety of an SDK. Last year, in addition to adding 80 SDKs to the index, we also worked closely with SDK and app developers to address potential SDK security and privacy issues, helping to build safer and more secure apps for Google Play.
Google Play Protect automatically scans every app on Android devices with Google Play Services, no matter the download source. This built-in protection, enabled by default, provides crucial security against malware and unwanted software. Google Play Protect scans more than 200 billion apps daily and performs real-time scanning at the code-level on novel apps to combat emerging and hidden threats, like polymorphic malware. In 2024, Google Play Protect’s real-time scanning identified more than 13 million new malicious apps from outside Google Play1.
Google Play Protect is always evolving to combat new threats and protect users from harmful apps that can lead to scams and fraud. Here are some of the new improvements that are now available globally on Android devices with Google Play Services:
Google Play Protect’s enhanced fraud protection pilot analyzes and automatically blocks the installation of apps that may use sensitive permissions frequently abused for financial fraud when the user attempts to install the app from an Internet-sideloading source (web browsers, messaging apps, or file managers). Building on the success of our initial pilot in partnership with the Cyber Security Agency of Singapore (CSA), additional enhanced fraud protection pilots are now active in nine regions – Brazil, Hong Kong, India, Kenya, Nigeria, Philippines, South Africa, Thailand, and Vietnam.
In 2024, Google Play Protect’s enhanced fraud protection pilots have shielded 10 million devices from over 36 million risky installation attempts, encompassing over 200,000 unique apps. By piloting these new protections, we can proactively combat emerging threats and refine our solutions to thwart scammers and their increasingly sophisticated fraud attempts. We look forward to continuing to partner with governments, ecosystem partners, and other stakeholders to improve user protections.
In 2024, we introduced a new badge for government developers to help users around the world identify official government apps. Government apps are often targets of impersonation due to the highly sensitive nature of the data users provide, giving bad actors the ability to steal identities and commit financial fraud. Badging verified government apps is an important step in helping connect people with safe, high-quality, useful, and relevant experiences. We partner closely with global governments and are already exploring ways to build on this work.
We also recently introduced a new badge to help Google Play users discover VPN apps that take extra steps to demonstrate their strong commitment to security. We allow developers who adhere to Play safety and security guidelines and have passed an additional independent Mobile Application Security Assessment (MASA) to display a dedicated badge in the Play Store to highlight their increased commitment to safety.
In addition to our partnerships with governments, developers, and other stakeholders, we also worked with our industry peers to protect the entire app ecosystem for everyone. The App Defense Alliance, in partnership with fellow steering committee members Microsoft and Meta, recently launched the ADA Application Security Assessment (ASA) v1.0, a new standard to help developers build more secure mobile, web, and cloud applications. This standard provides clear guidance on protecting sensitive data, defending against cyberattacks, and ultimately, strengthening user trust. This marks a significant step forward in establishing industry-wide security best practices for application development.
All developers are encouraged to review and comply with the new mobile security standard. You’ll see this standard in action for all carrier apps pre-installed on future Pixel phone models.
This year, we’ll continue to protect the Android and Google Play ecosystem, building on these tools and resources in response to user and developer feedback and the changing landscape. As always, we’ll keep empowering developers to build safer apps more easily, streamline their policy experience, and protect their businesses and users from bad actors.
1 Based on Google Play Protect 2024 internal data.
Today, people around the world rely on their mobile devices to help them stay connected with friends and family, manage finances, keep track of healthcare information and more – all from their fingertips. But a stolen device in the wrong hands can expose sensitive data, leaving you vulnerable to identity theft, financial fraud and privacy breaches.
This is why we recently launched Android theft protection, a comprehensive suite of features designed to protect you and your data at every stage – before, during, and after device theft. As part of our commitment to help you stay safe on Android, we’re expanding and enhancing these features to deliver even more robust protection to more users around the world.
Identity Check rolling out to Pixel and Samsung One UI 7 devices
We’re officially launching Identity Check, first on Pixel and Samsung Galaxy devices eligible for One UI 71, to provide better protection for your critical account and device settings. When you turn on Identity Check, your device will require explicit biometric authentication to access certain sensitive resources when you’re outside of trusted locations. Identity Check also enables enhanced protection for Google Accounts on all supported devices and additional security for Samsung Accounts on One UI 7 eligible Galaxy devices, making it much more difficult for an unauthorized attacker to take over accounts signed in on the device.
As part of enabling Identity Check, you can designate one or more trusted locations. When you’re outside of these trusted places, biometric authentication will be required to access critical account and device settings, like changing your device PIN or biometrics, disabling theft protection, or accessing Passkeys.
Identity Check is rolling out now to Pixel devices with Android 15 and will be available on One UI 7 eligible Galaxy devices in the coming weeks. It will roll out to supported Android devices from other manufacturers later this year.
Theft Detection Lock: expanding AI-powered protection to more users
One of the top theft protection features introduced last year was Theft Detection Lock, which uses an on-device AI-powered algorithm to help detect when your phone may be forcibly taken from you. If the machine learning algorithm detects a potential theft attempt on your unlocked device, it locks your screen to keep thieves out.
Theft Detection Lock is now fully rolled out to Android 10+ phones2 around the world.
Protecting your Android device from theft
We're collaborating with the GSMA and industry experts to combat mobile device theft by sharing information, tools and prevention techniques. Stay tuned for an upcoming GSMA white paper, developed in partnership with the mobile industry, with more information on protecting yourself and your organization from device theft.
With the addition of Identity Check and the ongoing enhancements to our existing features, Android offers a robust and comprehensive set of tools to protect your devices and your data from theft. We’re dedicated to providing you with peace of mind, knowing your personal information is safe and secure.
You can turn on the new Android theft features by clicking here on a supported Android device. Learn more about our theft protection features by visiting our help center.
Timing, availability and feature names may vary in One UI 7. ↩
With the exclusion for Android Go smartphones ↩