©IPF

OPEN IPTV FORUM

OIPF
Release 2 Specification

Volume 5 - Declarative Application Environment

[V2.3] — [2014-01-24]

Open IPTV Forum

Page 2 (415)

Open IPTV Forum

Postal address

Open IPTV Forum support office address
650 Route des Lucioles — Sophia Antipolis
Valbonne — FRANCE
Tel.: +33 492 94 43 83
Fax: +33 4 92 38 52 90

Internet
http://www.oipf.tv

Disclaimer

The Open IPTV Forum accepts no liability whatsoever for any use of this document.

Copyright Notification

No part may be reproduced except as authorized by written permission.
Any form of reproduction and/or distribution of these works is prohibited.

Copyright © 2014 Open IPTV Forum e.V.

All rights reserved.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

http://www.oipf.tv/

Page 3 (415)

Contents
L SCOPKE .ttt R b bR R AR bR R R AR R Rt R Rt Rt e Rt Rt R bbb ne et 11
2 REFERENCES........co oottt bbbt bbb stk b et b b e bt e b e b e bt b e b e Rt ek b e n e bt n e et b ne et 12
2.1 NORMATIVE REFERENCESeiuttttttittaiteeiteattaieeaueeaseaaseasseassesssasssestesaseassesssssssssssasssanseassesssessssssesssesssesssssssssesnses 12
2.2 OPEN IPTV FORUM REFERENCEScccutiittattatttattasteasteeateasseaseassssasesaeaastasseassasssesseestesssesssesssssssssssessesnsesssesseenes 13
2.3 INFORMATIVE REFERENCES........utitttittaitteitteattaatasetaseesutasstastasseassasssasseesseessessseassssaesassaaseaseansesssasssassessteessessnnns 14
3 CONVENTIONS AND TERMINOLOGYoooiiiiiiieieiieisie ettt sttt st st sttt st sttt bbbt 15
K T0 R 670 1 N\ =N [0 N OO OSSOSO PPRPR 15
3.2 TERMINOLOGY ..ttitiuietiiteeetestentetesteseesesseseesessessesessesseseabesseseabeeeseab e e es e e be e e b e e b e e eb e e b e e e bt b e e e bt et et bt et et en e abe et s e abe s 15
3.2.1 DIEFINITIONS ...ttt bbbt b etk b etk s bRtk s b e st ek b e Rt b e b e st ket n et b n et 15
3.2.2 ADDIEVIALIONS ...ttt bbbt bbb e 16
4 DAE OVERVIEW ...ttt sttt b ettt s b et eb et e bt et e b et e eb et e b e et et et e st et ebesbe e ebesbe e etennas 17
4.1 ARCHITECTURE OF DAEooiiiiitiiiiititestt ettt bbb bbb bbbt bbbt bbbt bbb 17
4.2 GATEWAY DISCOVERY AND CONTROL . ..uttiutiautiatiesteesteesteasaeassesseesseesseaaseassesssasssesssessesssesssesssessssssesssesnsesssesseses 18
4.3 APPLICATION DEFINITION ..iuttiutiittaattateasteastesseasteesteesseassesssessseassasssaseasseassesssessssssesssessessssssssssesssesssesnsesnsesseenes 18
4.3.1 Similarities between applications and traditional Web Pages.........coceeririiiiiieieseeee s 19
4.3.2 Differences between applications and traditional Web pages..........covrirririiniie e 19
4.3.3 THE QPPHCALION TFEO....c. ettt bbbttt e b bt e b e bt eb e e st en b e nbesbenbeebeebeene e 19
434 The application display MOl ... e bbb 19
4.35 THE SECUNILY MOUE ... et e st st e st e s reereereen e seene e besneareeneens 19
4.3.6 INNErItANCE OF PEIMISSIONSviviiiiiecie ettt r e e e e e sbesae s reere e e eneeseesteseenneereeneens 20
4.3.7 AV L=t T=To BT o] o LA T A o SR 20
4.3.8 F Ao NV o] o] oz 1T) TSN 1 PR 20
4.3.9 LYoo PR 20
4.3.10 Origin for Broadcast-delivered DOCUMENEScccviviierieriesieresesese e seee e ste e e sre e e e saesee e snessesneenens 21
4.4 RESOURCE IMANAGEMENTcutittiestiesteestea et aieeaueeateaabeasseassesseasbeesbeeabeaasesaeeeheeabe e bt ambeas b e esbenbeeebeeabeasbeasnesnnesaeennis 21
44.1 APPIICALION HFECYCIE ISSUBS ...ttt bbb bbbttt e b sb e be st ebeene e 21
4.4.2 Caching Of @PPCAION FIESoiuiiiiiiiee bbb bbb b s 21
443 Y o] g ToT VA Lo [TP O PRSPPI 21
444 Instantiating embedded objects and claiming SCarce SyStem FESOUICEScc.cvuerveruerererieeie e 21
445 IMEATA CONEIOL ...t ettt bbbt b etk bbb e st et b e et ben et 22
4.4.6 LT C o) 1 1T 0 1E)o] S SPR 22
4.4.7 Cross-application eVENt NANAIINGcveieieieie et a e srenresneereenes 23
4438 TUNEE TESOUICES ...ttt etttk stttk et e e bbbt h et e s et e bR 4R AR Rt e b e e e b e bt e bt e b e e b e e bt e se e e b e eb e bt eb e b e ne e 24
45 PARENTAL ACCESS CONTROL ...citttitiititiseatestestasessesessesseseasessessasessessasessessasessessesessensasessensasessensesessensesessensesessens 24
4.6 CONTENT DOWNLOADctittttteitesteseatasseseasesseseasesseseasesseseasessessasessessasessessasessessasessensasessensasessensasessensesessensesessens 25
4.6.1 DOWNIOAU MABNAGET ...ttt ettt ettt be ettt e et bt be bt et e e Rt es e e seeeb e s beebe ek e e Rt eneeeseabesbesbesbeaneaneas 25
4.6.2 Content AcCesS DOWNIOAA DESCEIPLONoiuiiiiiiitiiieiie ittt sttt ettt bbbt se bbb b saeeneenes 26
4.6.3 Triggering @ AOWNIOAMocuiiuiiiiii et b e bt bbbt et e b b e sbesbe et e ne e 26
4.6.4 Dol o] (o Vol o] (o) (o ol] [) USRS UTPTPUURPRRO 26
4.7 STREAMING COD ...tttk btttk h e e bt e bt e s bt ek e eh b e ekt e e b e e ebe e s e e eheeeae e ebe e bt enbeenbennee e 27
4.7.1 UNICASE SETAMINGttt ettt sttt b ekt be et s e e st e b e b e be bt ek e e Rt es e e e e b e nbeebeeb e e Reehe e e e nbenbesbesbeabeeneas 27
4.8 SCHEDULED CONTENT ...etttittteteatetesestesesessessesessesseseasesseseasessessasessessasessensasessessasessensasessensesessensasessensesessensesessens 28
4.8.1 Conveyance 0F CANNET TISTvii e b e sresreaneeneenes 28
4.8.2 Conveyance of channel list and list of scheduled recordings........c.cevverrreiiiirie s 29
49 DLNARUI REMOTE CONTROL FUNCTIONcitiuitiitirtenisintesisiesteseae st seese st et eese st sesestessesestesesessessesessens 30
4.9.1 Interfaces used by the DLNA RUI Remote Control FUNCLIONcccovvveieiiini e 30
410 POWER CONSUMPTION ...ttitttetiitistesestasestssessesessessesessesseseasessessasessessasessensasessessesessensesessensesessensasessensesessensesessens 31
4.10.1 DAE application Wake-Up SUPPOIoiiiiieeitiite ettt sttt et sbe bbb e se e snesbesbesbesbesneaneas 32
4.10.2 OITF NIDEINALE SUPPOITetiitiitiiteitt ettt sttt e et e ke sb e be bt ebe e e e b e ebesbeebe s bt ebeaseeneesbenbesbesbesbeaneeneas 32
4.10.3 State diagram fOr the POWET SEALE..........cuiiiiiiiie ettt e bbbt e et et sbesbesbesbesneeneas 33
411 DISPLAY IMIODEL ...utiitiiitiiit ittt ettt ettt ettt b e bt e bt et e et e ke e ehe £ 4b £ 22k e 2 ab e e h b e eh £ e eE e e e b e e ebe e b e e ReeeRe e ehb e ebe e bt enbeenrennn e 33
5 DAE APPLICATION MODEL ..ottt et ettt bbbttt 34
5.1 APPLICATION LIFECYCLE ..tttutiiiitiiteteiteseetestestesestessesesseseesestessesesse s eseasesseseabenseseabe st eseabe st es e et e nseseabe b eneabeneeseanees 34
511 Creating @ NEW aPPIICALION.iiiiieicice et e ettt e e neere e e e s e saesresrenneereenes 34
512 (0] o o TaTo I LaIR= o] o] 1Tor= 1 To] oS 35
513 W o] o] 1o 1A T T8 =70 U g o Fo U TSR 35

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 4 (415)

52 APPLICATION ANNOUNCEMENT & SIGNALLING......cetititeteitirtetestessesestessesessessesessessesessessesessessesessessessssessessssenes 35
521 g1 goTo [0 o3 (o] o PSSO PRSP TSPR 35
522 LCT=T 0T | OO OO ORRPOPR 36
523 Broadcast related apPliCALIONS.........cviviieieieie sttt e e r e resrenreaneenes 36
524 Service provider related apPlICALIONSc..eiiiiiiiiecece s 41
525 Broadcast independent apPlICALIONScuiiiieiiiiiere ettt bbb eneas 41
5.2.6 Switching DEtWEEN @PPIICALIONS.........ciiiiiiieiie bbbt se bbb 42
527 SIGNAITING FOIMAL ...ttt bbbt bt et e et e bt et et et sbesbesbeereens 42
528 WIAGELS TIFECYCIE ..ot b e bt bbbt et e et b e besbeebeene e 47

5.3 EVENT NOTIFICATIONS ...t iuttetteetiesteesteeste e et aseesteeaae e bt asbeesbesh e e sbeeabe e ke e aseeseeehe e ebe e bt e mbeas b e eb b e nbeeebeebeasbeasneaneesbeennis 48
53.1 Event notification framework based 0n CEA 2014.........ccooiiiiiiieieice et 48
53.2 IMS event NOtIfication fFrAMEWOTK ..ot 50

LI L0] =41V N 1S TSSOSO 58

6.1 VWWEB STANDARDS TV PROFILEiiutttitiittiittiteitstesteie sttt sttt st bt s b e st sbe s bbb es et et e s e et e e eneabe e eneene s 58
6.1.1 Additional restrictions and rEQUIEMENTSccviviieieeiee e e e et e e e e e sresresneereeneens 58

8.2 STILL IMAGE FORMATScittitttetestetetesteeetessessesessessesesteseesestesseseabe s es e ebe e e s e e ke e eb e eb e e e bt e b et es e et e b e bt et et eneabe st enearees 58

6.3 IVIEDIA FORMATS ...ttt tteesteeste ettt sttt eheesbe e bt eabees b e eh b e sh oo sk £ e ke e b e e s b e e R e e SR e e ehe £ be 2 bt 2R b e eR b e eh b e eb e e ebe e ke e sbeenbeabeesbeesbeannas 58
6.3.1 Media format of A/V media except for audio from MemMOrY ... 58
6.3.2 Media format of A/V media for audio from MEMOIYcccoiiiiiiiiiie e 59
6.3.3 IMBAIA TFANSPONT ...ttt b bbbt ea e e bt b e bt e b £ e Rt e R e e eb e e b e e b e ebeeb e e Rt ene e e e abenbesbesbeaneeneas 59

B.4 SV G ittt b bRt Lottt R et R Rt R e R et AR e ARt R R Rt R e R e Rt R et Rt R e bRt R et Rt Re e n e ne e 59

A S = 1 T OO OO PR ST 60

7.1 OBIECT FACTORY AP ..ottt ittt b et b et b bbbt s bbbt b et b bbbttt n e et et n b s 60
7.1.1 IMIBENOS ...t bbbt b etk b et E e bbb Rt R e bRt b e b n e b bbb n et 60
7.1.2 T 100] o] [T SRS 62

7.2 APPLICATION MANAGEMENT APIS ..ottt bbbttt 63
7.2.1 The application/oipfApplicationManager embedded ODJECEc.cccviveieririerere e 63
7.2.2 B I Lo AN o] 0] o= U T o] - TSR 67
7.2.3 The ApplicatioNCOHECTION CIASSccuiiiieiiie bbbt sb e bbb 71
7.2.4 The ApplicatioNPrIVAtEDALA ClASS.......ceiieieiieitiiieie ettt bbbttt be b bbb s 71
7.2.5 THE KEBYSEL CIASS ...ttt b e bbbt bt b et e e b e bt b e bt e bt e st en b e nbesb e besbesbeene e 72
7.2.6 New DOM events for application SUPPOITcoiiiiiiieieee ettt 75
7.2.7 EXamples (INFOIMALIVE)......c.ooiiiie bbbttt sttt bbbt e e et et b sbe b eneas 76
7.2.8 LYoo A PR 76

7.3 CONFIGURATION AND SETTING APIS ...oiiiiiitiiieiiiti ettt ettt et st 77
7.3.1 The application/oipfConfiguration embedded ODJECE.........c.covvv i 78
7.3.2 The CONFIGUIALION CIASS .. c.viveieiiis ettt e ettt e st e seere e e en e neenteseeaneereeneens 78
7.3.3 B I Lo B 1o 53 V) o PR 81
734 The NetWOrKINTEITACE CIASScvviiieiiiiiec bbbttt 89
7.35 THE AV OULPUL CIBSS ... ettt ettt b e bbb et e bt eb e b e bt eb e e neem b e nbeebesbesbeebeene e 89
7.3.6 The NetworkInterfaceColleCtion CIASS..........coiiiiiiiiiiiee et 93
7.3.7 The AVOULPULCOITECTION CIASSevieiitieieie ettt bbbttt nbe bbbt 94
7.3.8 The TUNEICOIECTION CIASSottt bbbt bbbt e bbb st ebe s e 94
7.3.9 THE TUNEE CIASS ..ttt bbbt bt bt e b et et e b e bt e b e b e eb e e neen b e nbesbenbesbeabeene e 94
7.3.10 The SIGNAIINTO ClaSS....cteitiiieiiietie ittt bbbttt b et bt b e bt e s e et et e besbesbesneeneas 95
7311 THE LINBINTO CIASS ...eviiiiieiteiee et bbb et bbbt st b et bbb n et 96
7.3.12 The StartupInformation CIASScciviiiiieie ettt re e e e e b e eesresreaneeneas 97

7.4 CONTENT DOWNLOAD APIS ..ottt b bbbt s bbbt bt e nbe s 97
7.4.1 The application/oipfDownloadTrigger embedded ODJECL..........cccviviieiicie e 98
7.4.2 Extensions to application/0ipfDOWNI0AdTIIGGETvcvviveieiee e 100
7.4.3 The application/oipfDownloadManager embedded ODJECEcccoiiiieieiiiiie e 100
7.4.4 THE DOWNIOAA CIASS ... vttt bttt e bbbt b e bt b et et e b sbesbesbeebeens 106
7.4.5 The DoWNIOadCOIECTION CIASScoviiiieiieiiie ittt bbbt b e bbb ens 110
7.4.6 The DRMCoNtrolINFOrmation CIASSccoiiiiiiiiiieic e et 110
7.4.7 The DRMCoNtrolINfOCOIECHION CIASScoviteitiiieiiieieee bbb 111

7.5 CONTENT ON DEMAND METADATA APIS ...ttt ettt sae s 112
7.5.1 The application/oipfCodManager embedded 0DJECEccoiiviiieii e 112
7.5.2 The ContentCatalogueCOIIECLION CIASScveieeiiiieieeieeee et reens 114
7.5.3 The ConteNtCatalOgUE CIASS.......ccvieiieieiie sttt st e sre e ene e e e e saesrestesneerennes 114
7.5.4 The ContentCatalogUEEVENT CIASS........cveiiieiisiese ettt sr et sneereenes 114

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 5 (415)

7.5.5 THE CODFOIAET CIASS...... ettt bbbttt s bbb e b s 114
7.5.6 THE CODASSEL CIASS ...ttt bbbt b et s bbbt e s bt ne b s 116
7.5.7 THE CODSEIVICE CIASS ...ttt b e bbbt b et s b e bt ne b 119
7.6 CONTENT SERVICE PROTECTION AP ...ttt ettt sttt et sb et sbe et sbe et nnes 121
7.6.1 The application/oipfDrmAgent embedded ODJECE.........covci i 121
7.7 GATEWAY DISCOVERY AND CONTROL APIS ...ttt 125
7.7.1 The application/oipfGatewaylInfo embedded ODJECT ..o 125
7.8 COMMUNICATION SERVICES APIS ...ttt bttt sb et ettt ie e sneesae e e 129
7.8.1 The application/oipfCommunicationServices embedded ODJECEcooeiiiiiiiiiiic e 129
7.8.2 Extensions to application/oipfCommunicationServices for presence and messaging services................. 133
7.8.3 THE USEIDALA CIASS ...ttt b bbbt b ettt sttt es et e ne b s 137
7.84 The UserDataCollECtiON ClaSScviiiiiriiiieiite ettt 138
7.8.5 IR T LU=l I T T TSP 138
7.8.6 The FeatureTagCoIIECtION CIASS.......civeieiieie st reens 138
7.8.7 THE CONEACT CIASS ...ttt bbbt b bbb bbb bbbt s bt n b e ab s 138
7.8.8 The ContaCtCOIECIION CIASS.......civiieiiiiieiiie bbb sne s 138
7.8.9 Extensions to application/oipfCommunicationServices for voice telephony Services..........ccccoovveeennnne 139
7.8.10 Extensions to application/oipfCommunicationServices for video telephony Services............ccocveerveunnne. 147
7.8.11 The DEVICEINTO ClaSS. ... eiitiiti ittt bbbt e e bbbt ettt se et et et sbesbesbeereenes 149
7.8.12 The DeVicelNfOCOIECION CIASSc.eiiiiiiieitiiie ittt et bbbt bbb 150
7.8.13 The COUECINTO ClASS....ueitiite ittt bbbt e e bttt bt ettt se e e et et sbenbesbeebeenes 150
7.8.14 The CodeCINfOCOIECHION CIASSc.veeiieiiiitiite sttt ettt bbb e 151
7.9 PARENTAL RATING AND PARENTAL CONTROL APIS ..ottt 151
7.9.1 The application/oipfParentalControlManager embedded ObJECt..........ccveririiieiivnirie e 151
7.9.2 The ParentalRatingSCNEME CIaSScveieiiieiescs e sre st neeneenes 155
7.9.3 The ParentalRatingSchemeColECtiON ClaSS..........viviieriee i reens 156
7.9.4 The ParentalRALING ClASS......ccueiiiiieieeieiie st st se e et st te e e b e e saestesseenae e enseseeseestesneerennes 157
7.9.5 The ParentalRatingCoOIECtION CIASSc.vcviieiiiiiecc et reens 160
7.10 SCHEDULED RECORDING APIS. .. .ottt sttt et b e b ettt s e sb e sbeesbeenbe e e 160
7.10.1 The application/oipfRecordingScheduler embedded OBJECL...........coceiiiiiiiiiie e 160
7.10.2 The ScheduledRECOITING CIASSc.eiiiiiiiiiie ettt bbb b 163
7.10.3 The ScheduledRecordingColIECLION ClaSScceiiiieieieie et 168
7.10.4 Extension to application/oipfRecordingScheduler for control of recordings..........ccooeeeiencieicienceene. 168
8 O T I T= N (= oo o [Yo o SR 170
7.10.6 The RecOrdingColIECtION CIASScvveeerieriesiesie sttt ettt naesresneeneens 174
7.00.7 THE PVREVENE CIASS ..ouviiiitiiiiiitiieessee ettt bbbt bbbttt et 174
7.10.8 The BOOKMAIK CIASS.......cuiiiiieiiitiiiciieic ettt ettt et 174
7.10.9 The BOOKMArKCOIECIION CIASScuviviiiiiiiiiiect ettt 174
7.11 REMOTE MANAGEMENT APIS ..ottt ettt sttt sb et b et sb ettt et sb ettt sae e ebesbe e ebennes 175
7.11.1 The application/oipfRemoteManagement embedded ODJECE ..ot 175
T.12 IMIETADATA APIS. ettt h btttk h e b e b e e bt e be e Re e e R e e ehe e ebe e bt embeeabeebb e et e e sbeesbeenbeannens 179
7.12.1 The application/oipfSearchManager embedded ODJECEcccoviiiiiiiiic s 179
7.12.2 The MetadataSEarCh CIASSc.e ittt ettt b e b b be b b ens 182
7.12.3 THE QUENY CIASS. . .cieeuieeete ittt ettt bt bbbt b et e st e e e b e e bt bt e bt e bt eme e e et e st sbesbeebeeneenes 187
7124 The SEArCNRESUILS CIASSiiviitiieietieiee ettt e bbbttt e et st sbesbesbeereenes 187
7.125 The MetadataSEarcChEVENT ClASS.........coiuiiiiriiiiirieisee ettt bttt 189
7.12.6 The MetadataUpPAatEEVENT ClaSS.......coveveiieriirieiiseeeeestese sttt e e e e snesrenresneeneens 189
7.13 SCHEDULED CONTENT AND HYBRID TUNER APIS ...ttt ettt st 189
7.13.1 The video/broadcast embedded ODJECE.........ccccviieiiiiee e 189
7.13.2 Extensions to video/broadcast for recording and time-shift...........cccccovvieiiiiiiiisi s 204
7.13.3 Extensions to video/broadcast for acCess t0 EIT P/fcvoiiiiiiiie s 215
7.13.4 Extensions to video/broadcast for playback of selected COmMpPONENts...........ccccoviieiiiiiiie i 216
7.13.5 Extensions to video/broadcast for parental ratings EITOFScoviieirieeie it e 216
7.13.6 Extensions to video/broadcast for DRM FIgNtS EITOFS.........cocoiiriiiiiiieie et 217
7.13.7 Extensions to video/broadcast for current channel information..............ccocoiiiiiiiiin e 218
7.13.8 Extensions to video/broadcast for creating channel lists from SD&S fragments........ccccooeveiencnencennne. 218
7.13.9 The ChannelCon ig ClaSScuuiviieieriee st ettt seene e e e bestesreneeaneeneenes 218
7.13.10 THE ChanNEILISE CIASS ... vcveiveieieiie e bbbt ettt b st 224
7.13.11 THE ChaNNEI CIASS ..o bbbt bbbt st b et st bene et 225
7.13.12 The FavouriteLiStCOHECION CIASS......c.oviiiiieie et 231
7.13.13 THE FAVOUITEELISE CIASS ...vveviieieiie ettt bbbttt sttt 232

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 6 (415)

7.13.14 Extensions to video/broadcast for channel SCan...........cccocvvviiiiiiic e 234
7.13.15 The ChannelSCANEVENT CIASSccvoiiiiieicie ettt ee s 234
7.13.16 The ChannelSCanOPLIONS CIASSviveieriireie sttt r et sreereeneens 234
7.13.17 The ChannelScanParameters CIAaSS........cviiiiieiierc et 235
7.13.18 The DVBTChannelScanParameters CIasscoivieieriiiiieise e 235
7.13.19 The DVBSChannelSCanParameters CIASSc.uieiiairiiirie ittt et st 236
7.13.20 The DVBCChannelSCanParameters CIaSSciiiiiiairierie ettt sb et 238
7.13.21 Extensions to video/broadcast for SynChronization.............ccoeeiiieiiiinc i 239
7.13.22 The ATSCTChannelSCanParameters CIaSSuiuiiciriire ettt 241
714 MEDIAPLAYBACK APIS.. .ottt bbbt ettt e bt e e bt e bt eabeen b e eb b e st e e nbeesbeenbe e e 241
0 o T- B AV AV A 0o a1 1 7] o] =11 R 242
7.14.2 Extensions to A/V Control object for playback through Content-Access Streaming Descriptor.............. 248
7.14.3 Extensions to A/V Control object for trickmOUeSccevvieiiiiie e 249
7.14.4 Extensions to A/V Control object for playback of selected components..........ccocveevvvvevevericie s se s 250
7.14.5 Extensions to A/V Control object for parental rating errorscvccveverevenesiese s ee e 250
7.14.6 Extensions to A/V Control object for DRM FghtS €ITOISccvvviveieiieesese e see e 252
7.14.7 Extensions to A/V Control object for playing media ODJeCtS.........cccoveieiriiiiieiee e 253
7.14.8 Extensions to A/V Control object for Ul feedback of buffering A/V content............cooeieiiiiiiiinine. 254
7.14.9 DOM events for A/V CONLrol OBJECL..........ooi i s 258
7.14.10 Playback 0f MEMOIY QUAIO..........ccuiiiiieie et bbbttt bbb bt eneas 259
7.14.11 Extensions to A/V Control object for media QUEUINGcoiiriiiiiiiere e 260
7.14.12 Extensions to A/V Control object for volume control ..o 262
7.14.13 Extensions to A/V Control object for resource management..........cooeeerereriesesesreesesese e e seseenens 262
7.15 IMISCELLANEOUS APIS ...ttt ettt bbb ekt b ekt b et e e bttt sb et ebesbe e ebe st e ebennes 262
7.15.1 The application/oipfMDTF embedded ODJECE........cveieiiicc e s 262
7.15.2 The application/oipfStatusView embedded ODJECE...........cccviiiiiiriiicieice s 264
7.15.3 The application/oipfCapabilities embedded OBJECT..........cccvvii i s 266

A o 4T B AN Fo Y o T o] g 267
A I B L o TH (o o] 1L o TR U USSR 267
7.16 SHARED UTILITY CLASSES AND FEATURES.oiuttittiittaittattastesteestesstessteassessesssssssssseasseasesssesssessesssssssesssesssens 267
A N R = 7= LTl oo | [T od o] OO S TP URUROR 267
7.16.2 T PrOgramIme CIASSccuciuiiuiitiiuietieee ettt sttt ettt bbbt bbbttt e b e b e bt bt et e bt ese e e et et sbesbeebeeneenes 267
7.16.3 The ProgrammeCOlIECLION CIASScoviiiiiiiiie ittt bbb 274
7164 THE DISCINTO ClASS. ...ttt bbb bbbttt b bbb e n et 274
7.16.5 Extensions for playback of selected media COMPONENTScccveveieeieiirr e 274
7.16.6 Additional support for ProteCted CONTENTccveveieie e ene s 279
7.17 DLNARUI REMOTE CONTROL FUNCTION APIS ..ottt 280
7.17.1 The application/oipfRemoteControlFunction embedded 0bjectccceoeievviiviciiiice 280

8 SYSTEM INTEGRATION ASPECTS ...ttt ettt sa et ese bt ene st sbane st 287
8.1 HT TP PROTOCOL ...ttt ettt ettt ettt bkttt h e he e e b e e ke 2 s bt ek e eb £ e eb e e ek e e b e e me e e heeebe e ebe e bt enbeenbensee e 287
8.1.1 HTTP USEr-AQENT NBAUETcveiie ettt et bbbt ee e bbbt b e e e st e neeebesbe bt ebeene e 287
8.1.2 HTTP X-OITF-RCF-USEr-Agent NBAGETcc.oiiiiiiiieiiiiee ettt sttt st 287
8.2 MAPPING FROM APIS TO PROTOCOLS.cuttiiiiiiiitieitee ittt sttt sttt ettt as e st e sbe e beesbeaee s e e sieesaeeabeanbesnnessee e 287
8.2.1 COD DOWNIOAA OVEF HT TP ...ttt bttt bbbt ettt e b et et sbesbesneeneas 288
8.2.2 CoD Unicast Streaming with SIP Session Managementccocuiieriiieieneneneseeeee e 289
8.2.3 Scheduled Content Multicast Streaming with SIP Session Managementcocveververereninsiesesnseenens 293
8.2.4 Communication Services with SIP SeSSioN ManagemEeNt........cccveiviverierierereseseseeeeseeseeseesressessesseseesens 299
8.2.5 CoD Unicast Streaming over RTP and HTTP ...c.ocovoiiieiirc e s enees 300
8.2.6 Scheduled content MUItICASt STrEAMINGccvivireiiieie s e et resrenre e eneas 305
8.3 URI SCHEMES AND THEIR USAGEcutittreetiiteietesteieetesteseetesteseetesteseetesseseasessesestessessesessesessessesessessesessesseseasenses 306
8.3.1 Media FragmMENtS SUPPOIT.....c..iiiiiitiiteie ettt ettt bbbt bt e esbesb et e sbe et e e seenbenbesbesbesbeebeene e 308
8.4 MAPPING FROM APIS TO CONTENT FORMATSciitiiitiiiiiie ettt ettt ettt sttt e saesee e e saeesaeesbeenbesnnessee e 309
8.4.1 L0 4F: T 1ol T g O 01T £ o] PO RP RPN ST PRURURURURN 309
8.4.2 AV COMPONENT ...ttt ettt eb e bt bt e s bt es b e eh e e eh e e ebe e ebe e be e Reeehe e ehe e ebe e bt et e embeeh b e et e e nbeenbeenbeanneas 309
8.4.3 CRANNEL ...ttt et bbbt bt bt e bt et oAb e b e e b e e b e e be e bt e Rt en b et e et e nbesbenbeereeneas 312
8.4.4 Programme, ScheduledRecording, Recording and DOWNIOadccoueieiiniiiiiieniceeee e 319
8.4.5 Exposing Audio Description streams as AVComMpPonent 0bJECESvcververerevireieceeeee e 328
8.4.6 HTMLS5 Media EIement MaPPINGccvoveieieeiesi ettt sa et sneere e ensesaesaesresnesreeneens 328
85 DLNARUI REMOTE CONTROL FUNCTION IMPLEMENTATION ..c.ccitittietisteietenteseetestesestesneseetesneseesessesessennes 330
8.5.1 Relationship between DAE application and control Ulccocvvviiiiiicie s 330

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 7 (415)

8.5.2 XML UI LiSting PrOVISIONINGviieieieie e sie e ste s ettt e e ese st testessesra e e ensesaessessesnessesneanens 330
8.5.3 Retrieving the CONLIOL Ulcooiiiiieie ettt e e e et e bennenreene e 332
8.5.4 Receiving and responding a message between the control Ul in the Remote Control Device and OITF. 334
8.5.5 Notification to the Remote CONIOl DEVICE.ccciiiiiiiiiiiiccre s 335
8.5.6 Handling Multiple DAE applications and Multiple Remote Control DeViCes.........c..ccevverererivrivsrsnnnnan, 336

O CAPABILITIES. ...ttt b b bbb bbb bbbttt s b e bttt e bttt en et 338
9.1 MINIMUM DAE CAPABILITY REQUIREMENTS...uiiiiiiiiiittitiiieeeesiibbatesesesssssbbasesssesssasbssesssesssasssssssssesssssssssesssess 338
9.11 SSLITTLS REGUITEIMENTS ...t itttteittetie ettt sttt sttt e et e et e bt sbesbe bt ese e e e b e sbesbesbeebe et e e seaneeneeabenbesbenbeaneaneas 339
9.2 DEFAULT U PROFILES.iiittittettt ettt sttt sttt bt bttt es et e skt e s be ekt e bt e se e e he e sbe e abe 2t e e mbees b e abbesbeenbeenbennneas 340
9.3 CLIENT CAPABILITY DESCRIPTIONcitttittasttattasttattasteasteesteessessseassessesssessseaaseanseassesssesssessesssesssessssssessssessesnses 344
9.3.1 Tuner/broadcast capability INAICALIONccoiiiiiieiiccce e 345
9.3.2 Broadcast content over IP capability INdiCAtioN...........c.cooviiiiiiiie e 346
9.3.3 PVR Capability INAICALIONcveiiiiic et ettt en e n et et srenreaneeneas 346
9.34 Download CoD capability INAICALION..........cceiiiiiiieie e 347
9.35 VT 01 L - T TSP 347
9.3.6 =T a o [=To AN AT AN o IR VT] o Lo} o S 348
9.3.7 OITF Metadata APT SUPPOIT ..ottt ettt b e bbbt et e e st e e et e nbesbesbesneaneas 348
9.3.8 OITF Configuration APT SUPPOITc.eieiie ittt sttt e bbbt sttt e e et esbesbesbesneeneas 349
9.3.9 Communication SErvices AP SUPPOITcouiiiiiiiiiiiee ettt sa et bbb eneas 349
0.3.10 DRM capability INAICALION.ciiiiiiiie ettt b et bbb ens 349
9.3.11 Media profile capability INAICALIONooiiiiiiiee e 350
0.3.12 RemOte diagnOSLICS SUPPOIT .. .ccueiuieiieeeie ettt sttt sttt bbb e e e sbesbesbesbe bt st e e st ene e e e benbesbesbeabeereenes 351
LR T T AV C OO SO PRSP 351
9.3.14 Third party NOtITICAION SUPPOITc.ecieieiesc ettt re s se e et nrenreaneeneenes 352
9.3.15 Multicast Delivery Terminating FUNCLION SUPPOIT........coiieieiiriieeeeieee e ste et 352
0.3.16 Other Capability EXIENSIONSviieieiiierierie e et e e e sae st e besreste e e enee e eteseesrenrenneeneenes 352
0.3.17 HTIMLS VIGBO .ttt bbbttt bbbt b bt b et n et 352
9.3.18 DLNA RUI Remote Control FUNCLION SUPPOIL.......cveieiirieriestesieseerieseeieseeste e ssessessaeseeseessesseseessessessenses 352
0.3.19 POWET CONSUMPLION ...ttt iteetieie ettt sttt sttt e e et et sbe b e bt e b e aeeabesaesbesbe e bt et e e bt eme e e ebenbesaenbesbeereenes 352
TR I O 1Y T [0 1= 3OS 353
9.3.21 Buffer control of AV content playback AP SUPPOILc.ooiiiriiieiiiee et 353
0.3.22 TeMPOTAL CHIPPING .ottt ettt bbbttt s e e b e e bt bt b e e bt ese e e e be st sbesbeebeebeenes 353
9.3.23 Capability Elements from Other SCREIMAS.coiiiiiiiii e e 353
TR B0 S o T 41 = ST o] o i PR 354
10 SECURITY ottt ittt ettt ettt e b et e ket et e e b e e e R b e s e R e e b e e Rt ek e s e s e ke b e R e ket en e ke b e s e e be e en et e s enente e 355
10.1 APPLICATION/ SERVICE SECURITY ...octtitiriettitesiatestertatesteseatestesestestesestessesessessesestessesessessesessessesessensesessensesessens 355
O O R @ T I T 0L (= 11T) SR 355
10.1.2 SEIVEI FEOUITEMENTS .uiveiteeieeeieiteiestestestesseeseeseetestesressesseeseeeesseeessesseaseeseeseesseseeatesseaneaseeseenseseeneeneesneanenses 355
10.1.3 Specific security requirements for privileged JavaScript APIS.......ccccveierineiiesie e 356
10.1.4 PeIMMISSION NMAIMIES. ..c.tiitiitiitieteeitente st steetee it esee st e besbe bt sbeaaeebe e s e abenbeebeebeebeeh e e s e em b e ebeebeebeebeebeeseentenbesbesbesbeeneanes 358
10.1.5 Loading documents from different domMainsccooiiieiiiiii i s 360
10.2 USER AUTHENTICATION ...tuttittiittasttateasteastasseesseesteesseasessseassesssaaseaseasseassesssesseesbeesbesseasssssssssessseanseansesnsesseenes 360
10.3 DLNA RUI REMOTE CONTROL ..cottitieuttatttsteesteesteesteaseaseasseaseeastasseasseassesssessesssssssesssesssssssssssssssssseansesssesssenes 360
11 DAE WIDGETS ...ttt sttt bbbtk bbbtk b e Rtk b e st ek e b e st ek e b e bt ek s b e st et b e st st b en et 361
11.1 WIDGETS PACKAGING AND CONFIGURATION.....c.tttttittiietaieesteaateasteasseassesteessessseesseasesssssssssseesssssseansesnsesseees 361
11,2 ACCESS REQUEST ..iutiiiitiiteietesteteteste et ste e et sbe e st sbe et sbe st et s b e st e ke s b e st e b e b e Rt e b s b e st ek e b e st e be s b e st e b s b e st ebe st enenbe b rentens 361
11,3 WWIDGET INTERFACE ...cutitiuieteiteitete sttt sttt sttt bt st b et s b etk s b e st ek s b et e b e b e st ek e b e st ek e b e st e b b e st et et en e et b n et 361
114 DIGITAL SIGNATURE ...c.tittuttttstetetesteseatestestatestestatestestatesteseatesseseabesseseabesteseabesbeseabesbeseabesbeseabesbeseabenbesestenbesentens 361
12 PERFORMANCEooiititeitee ettt sttt sttt st et b et s b et e be s b e st et s b e st e be s b e st e be st e st e besb e s e et beseabenbenentns 363
12.1 GRAPHICS PERFORMANCEttittitettetestestatesteeatestetatestesestestesesbesteseabesbeseabesbe st abesbeseabesbesesbesbeseabenbesesbenbesentens 363
12.1.1 Introduction (INFOFMALIVE).......c.oiiiiii et b e bbbttt b bbb ens 363
12.1.2 PerfOrmANnCe LEVEIS ..o bbb bbbttt be bbb ne s 363
12.1.3 Minimum 2D Graphics PEIrfOIMANCEccuiiiiiiiiiieieit e bbb 363
12.1.4 Minimum 3D Graphics PEIrfOIMANCEccuiiiiiiiiiieiet et bbb 364
12.1.5 Minimum Canvas PerfOrMANCE.coi ittt sttt b e bbbt et sbesbeebeebeenes 364
12,16 Minimum WeDGL PEIrfOIMANCEoiuiiiiiieieieeie ittt bbbttt sb e bbb enes 364
12.1.7 Performance IMEASUIEMENTcuiiiiriitiieeite ettt sttt sttt b bt b sttt s e b et s bt n et et ne b s 364
ANNEX A. CHANGE HISTORY (INFORMATIVE)ciiiitiiieieieitee ettt sttt sttt 366

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 8 (415)

F N N N =0 G = T Y £ ©] 1 R 367
ANNEX C. DESIGN RATIONALE (INFORMATIVE) ...ttt 368
(O R I = = T [] VY]) = I 368
ANNEX D. CLARIFICATION OF DOWNLOAD COD, STREAMING COD AND CSP INTERFACES
(INFORMATIVE) ..ottt ettt ettt etk bt ekt R ek e 2o e e e b e e 4t e h e e Rt eh e e s e e m b e e e e ebeeEeebeeb e eneemeeeesbesbesaeereaneans 369
D.1 [NRRI0] n 8o 1 1] N RO 369
D.2 I Ey O = Nl = =N =TSR 370
D.3 ADDITIONAL NOTES ABOUT CONTENT-ON-DEMANDc.ctttiiiiiiiiiiiiiiiie e siiitiie e eibtbae s e s s sbbbass e e s s s s snbbaans 373
ANNEX E. CONTENT ACCESS DESCRIPTOR SYNTAX AND SEMANTICS........ooiiieee e 374
E.l CONTENT ACCESS DOWNLOAD DESCRIPTOR FORMAT ...ttt ettt e s sabbaae s s s s s sabbabas s s e e enes 374
E.2 CONTENT ACCESS STREAMING DESCRIPTOR FORMAT ...ovviiiittiie ittt evte e eteee e ervee s entan e s ebane e enaee s 375
E.3 ABSTRACT CONTENT ACCESS DESCRIPTOR FORMATuviiiiitii ettt ttee s eaae s sbae e e enaee s 375
ANNEX F. CAPABILITY EXTENSIONS SCHEMAottt ettt s svan e erbee s 380
ANNEX G. CLIENT CHANNEL LISTING FORMAT ...ttt ettt et entae s svaee e ervee s 383
ANNEX H. DISPLAY IMODELottt ettt ettt ettt e e e ettt e st e e s s e bt e e e s sabt e e s st aa e e s sbbaesssbbassssabenessbbees 386
[1O R I Y] [0 N IR = 1N N = Y (] o = IS 386
H.2 INTERACTION WITH THE VIDEO/BROADCAST AND A/V CONTROL OBJECTS.....uuuiiiiriieeiitiieesseesessieeesssineeins 387
H.3 GRAPHIC SAFE AREA (INFORMATIVE)uiitiiuiiuieitentestesteateaseaseessestestestessesseaseessassestessestessessesssansesssssessessessessens 388
H.4 CURRENT CHANNEL (INFORMATIVE) ...ciutttiiteteitestestesteateaseaseessestestesaessesseassessansessessestassesssassansesesssessessessessens 388
ANNEX 1. BACKWARDS COMPATIBLE PROFILE OF HTML5 MEDIA ELEMENTS.......cocoviiiiiieeeee. 390
1.1 [NRRI0] n 8o 1 1] N RO 390
1.2 AV AT o] (o 3 = I =11 =1 TR 390
1.3 F O 0] (@ 3 = = 1Y] =V 390
1.4 @10 Lot = T =1 =1 391
1.5 Y =TT N T N 391
1.6 (@ =)= =0 i I = =T 391
1.7 (D] =N 0= N L] =R 391
ANNEXJ. DLNA RUIREMOTE CONTROL FUNCTION SEQUENCES.........cccooiiiiierrce e 393
J.1 REMOTE Ul AND BOX MODELS (INFORMATIVE)c.utittitiittetieeetestestesiesuessesseessessesaestesaestesseasssssessessessessessessens 393
RO B = 1) 111 Yo =] O RTRT 394
N = 10) 11101 [TR 394
R T B = 10) 1410 o [TR 394
J.2 DLNA RUI REMOTE CONTROL FUNCTION SEQUENGCES ...vviiiiiiiiiiitiiii e e s isiibtiees s s s s s satbess s e s s s s saabbasssasssssanssanns 395
J.2.1 Launching a DAE application to obtain the Control Ul...........cccccoviiiiiiiieiicc e 396
J.2.2 Obtaining the control Ul from a running DAE appliCation...........ccccvviviiveieiinn e e 398
J.2.3 Sending and receiving messages between the Remote Control Device and DAE application...................... 400
ANNEX K. COLLECTIONS ..ottt ettt ettt e et e e s et e e e s e st e e e sab e e e e s ebb e e s s aabbe e s sabaseesbbasssasbasssssbeaesssbbnes 401
| R I = Ot I I (o i (0] N 1 == 7 =R 401
O R = o o =T 1 =TSSR 401
K.1.2 1Y [1100 SRR 401
ANNEX L. SVG VIDEO TAG SUPPORT ..ottt ettt e et e et te s sbae e e s ebbee s s sntae s e snbaee e s erree s 402
ANNEX M. MULTIMEDIA TELEPHONY SEQUENCES (INFORMATIVE)......ccooiiiiiiieieieie e 405
M.1 FULL-DUPLEX VOICE TELEPHONY CALL FLOWccctutiiiitteeeiitieeeieteeessteeeesetvesssesaessssssesessssesssssssssssssesssssseesesns 405
M.2 FULL-DUPLEX VIDEO TELEPHONY CALL FLOWuviiiiitiieeiitieeeeeteeessteeessetveesssstessssssesssasssesesssssssssssessssssensesns 406
M.3 CAPTURE DEVICE AND CALL PARAMETERS SETTING FLOW......coeituiiiireieeiitiieeierteeesireesssssresessssesessssesssssseneeans 408
M.4 FULL-DUPLEX VOICE TO VIDEO TELEPHONY SESSION UPDATE FLOW.....uuviiiiiiiiiiiiiiiiieeesiiiirienseesssssisssenseees 409
ANNEX N. SERVER ROOT CERTIFICATE SELECTION POLICY (INFORMATIVE)....cccccceovvivnivivinernne 411
N.1 [NRRI0] 51U o 1 1] N RO 411
N I =7 N o1 ST =T U] | o RO 411
RS T = | I [0 2RO 411
ANNEX O. CHANGES TO SECTION 5.6.2 OF CEA-2014-A......coooieeeie ettt sttt 413

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 9 (415)

Figures
o =T @ 1 I I 1ol T (=Tt (V] =SS 17
Figure 2: OIPF architecture with DLNA RUI RCF SCENAIIO........cciveieiiieriesesiestesteseeseesseste e seessessessaeseessessessessessessessens 30
Figure 3: State diagram Of OITF POWET STAEScc.eiieieiirie ettt bbbt bbbt e e e sbesbesbesbe b e ane e 33
Figure 4: Behaviour when the selected channel ChangeS.........cccvvvii i 38
Figure 5: Behaviour when the application signalling for the currently selected channel changes or when a running
broadcast-related aPPIICATION EXITS.......c..oiuiiie ittt e e bt bbb e e en e e e st e sbeebeebeene e 40
Figure 6: General Event Notification Architecture on OITF and Remote Ul SErVer..........ccciiiiiiiiiiiniene e 49
Figure 7: HNI-IGI transaction for outgoing SIP requests from a DAE application..........cccccvvvvvvvieeiienene e, 51
Figure 8: HNI-IGI transaction for in-session iNCOMING SIP FEOUESE........cc.oiuiiiiiiiiiiieie et 53
Figure 9: What happens when the OITF is first tUrNEd ON..........cccoviieiiiiie e 55
Figure 10: User 10gs in uSing the DAE INTEITACEcciiiiiiie et b bbb 56
Figure 11: Unsolicited message from the NEIWOIKc.ooviiiiiiii st sne e 57
Figure 12: State diagram for embedded application/oipfDownloadManager objects (normative)................. 101
Figure 13: State machine for a metadata search (INfOrmative) ... s 182
Figure 14: State diagram for embedded video/broadcast objects (informative)..........cccceeevriviivereicne i sn s 190
Figure 15: PVR States for recordNow and timeshifting using video/broadcast (normative)cc.ccoeerveenne. 205
Figure 16: State diagram for embedded A/V Control objects (NOrMAtIVE)cccveeeriererereie e 246
FIQUIE 177 IMIBIN SCENAITO ...ttt ettt sttt ettt ettt s b e bbb et e b e b e e bt e b e e bt e b £ e R e 2Rt e H e b e ek e e Re e b e e bt e b e e e et e besbesbeabeebeanes 369
Figure 18: Logical plane model (INFOrMELIVE)eiiiieiie e ettt sb e b 386
FIgUre 19: GraphiC SAE @rBA.......cccveieeiieiiiie e se st et e e et et e be s teebe e s e e se e ee b e saesaeebesseeseeneeneeseeseeneeaneenennes 388
FIQUIE 20: T-BOX IMIOGE ...ttt et b bbbt h e e e b e bt e bt b e bt e bt e e et e b sbesbesbeeneenes 394
o =Tt I =0) Y/ o o[- U 394
FIQUIE 22: 3-DOX IMOUEL ...ttt ettt bbbt bRt e s e b e b e e bt bt e b e bt e st e e et e b sbeebeareebeanes 395

Tables

Table 1: Events applicable for cross application event Nandlingc.ccoeoiiiiiiiieii e 24
Table 2: APPIICALION SIGNAITING ..ot b ettt e b et b et e e be e st e e e ebesbesbeebeene e 42
BRI Lo R D VA ==To] o] [Tor= U o gl oo g1 4] I o]0 o S ST 44
Table 4: Supported application SIgNAIING FEALUIEScciiiiiiie bbb b 47
Table 5: KeY t0 STAtUS COIUMN ...ttt e sttt e e se e s e ee e e eesteebeereeneeseeneeseesnenreaneens 47
Table 6: New DOM events for appliCation SUPPOITuieeiiieiiesie sttt et bt see bbbt ene e 76
Table 7: Metadata search States (NOIMALIVE).........ciiiiieiieierierese st se e e e ettt r e e et e eestestesseereeneenteseeseestenneereanes 183
Table 8: State transitions for the video/broadcast embedded ODJEC.........c.covvieiiiiiii i 191
Table 9: Properties of the A/V Control Object when the type attribute refers to video or audio..........cccccceeriiiienicinnne. 243
Table 10: Additional Properties of the A/V Control Object when the type attribute refers to video..........cccocvevvvivennnne. 244
Table 11: Methods of the A/V Control Object when the type attribute refers to video or audio...........ccccocervreiicienennn. 245
Table 12: Additional Methods of the A/V Control Object when the type attribute refers to videocccccoevveveivevennennn, 245
Table 13: Additional applicable requirements from CEA-2014 ..ot 245
Table 14: URI SCNEMES ANT USAQES ... veveiueeiieeiteitestesteeteeteaeetesaestestesseaseeeassasaesaesbeaseaseeseansassesbesbeabeabeaneenbessesbesbessesseanes 306
Table 15: Base Ul Profile NAMES ..ot 340
Table 16: Complementary Ul Profile Name Fragmentscoooiiiiiiiiiiiie e s e 342
Table 17: Minimum 2D graphics PErfOIMANCEcciviieieieiie sttt se e et ra et e e st e ste e e reeseen e seeseeseenneereanes 363
Table 18: Clarification of the “current channel” concept in different SCENAriosccovevereiiiiienieee e 388

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 10 (415)

Foreword
This Technical Specification (TS) has been produced by the Open IPTV Forum.

This specification provides multiple options for some features. The Open IPTV Forum Profiles specification
complements the Release 2 specifications by defining the Open IPTV Forum implementation and deployment profiles.

Introduction

The Open IPTV Forum Release 2 Specification consists of ten Volumes:
= Volume 1 - Overview,
= Volume 2 - Media Formats,
= Volume 2a - HTTP Adaptive Streaming,
= Volume 3 - Content Metadata,
= Volume 4 - Protocols,
= Volume 4a - Examples of IPTV Protocol Sequences,
= Volume 5 - Declarative Application Environment,
= Volume 5a - Web Standards TV Profile,
= Volume 6 - Procedural Application Environment, and
= Volume 7 - Authentication, Content Protection and Service Protection.

The present document, the Declarative Application Environment Specification (Volume 5), specifies the DAE
functionality of the Open IPTV Forum Release 2 Solution.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 11 (415)

1 Scope

The Open IPTV Forum has developed an end-to-end solution to allow any consumer end-device, compliant to the Open
IPTV Forum specifications, to access enriched and personalized IPTV services either in a managed or a non-managed

network.

Its functional architecture specification [OIPF_ARCH2] defines a block called OITF which resides inside the residential
network. The OITF includes the functionality required to access IPTV services for both the unmanaged and the managed

network.

Part of these functionalities is the Declarative Application Environment (DAE): a declarative language based
environment (browser) based on the OIPF Web Standards TV Profile [OIPF_DAE2_WEB] for presentation of user
interfaces and including scripting support for interaction with network server-side applications and access to the APIs of

the other OITF functions.

The DAE is the focus of this specification.

The requirements for specifying this functionality are derived from the following sources:
= Open IPTV Service and Platform Requirement for R2 [OIPF_REQS2];
= Open IPTV Functional Architecture for R2 [OIPF_ARCH?2].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 12 (415)

2 References

2.1 Normative references

[3GPP TS 24.229]

3GPP, TS 24.229, “IP Multimedia Call Control Protocol based on Session Initiation Protocol
(SIP) and Session Description Protocol (SDP) Stage 3 (Release 8)”

[CEA-2014-A]

CEA, CEA-2014-A, (Including the August 2008 Errata) “Web-based Protocol Framework for
Remote User Interface on UPnP Networks and the Internet (Web4CE)”

[TS 102 539] ETSI TS 102 539, “Digital Video Broadcasting (DVB); Carriage of Broadband Content Guide
(BCG) information over Internet Protocol (IP)

[TS 102 809] ETSI TS 102 809 “Digital Video Broadcasting (DVB); Signalling and carriage of interactive
applications and services in Hybrid broadcast/broadband environments”

[TS 102 851] ETSI TS 102 851, “Digital Video Broadcasting (DVB); Uniform Resource Identifiers (URI)
for DVB Systems”

[DVB-IPTV] ETSI TS 102 034 V1.4.1, “DVB-IPTV 1.4: Transport of MPEG-2 TS Based DVB Services
over IP Based Networks (and associated XML)”

[EN 300 468] ETSI EN 300 468, “Digital Video Broadcasting (DVB); Specification for Service Information
(SI) in DVB Systems”

[TISPAN] ETSI TS 183 063, “Telecommunications and Internet converged Services and Protocols for
Advanced Networking (TISPAN);IMS-based IPTV stage 3 specification”

[IEC62455] IEC, IEC 62455, “Internet protocol (IP) and transport stream (TS) based service access”

[RFC1321] IETF, RFC 1321, “The MD5 Message-Digest Algorithm”

[RFC1918] IETF, RFC 1918 “Address Allocation for Private Internets”

[RFC2109] IETF, RFC 2109, “HTTP State Management Mechanism”

[RFC2119] IETF, RFC 2119, “Key words for use in RFCs to Indicate Requirement Levels”

[RFC2246] IETF, RFC 2246 “The Transport Layer Security (TLS) Protocol Version 1.0”

[RFC2326] IETF, RFC 2326, “Real Time Streaming Protocol (RTSP)”

[RFC2616] IETF, RFC 2616, “Hypertext Transfer Protocol -- HTTP/1.1”

[RFC2818] IETF, RFC 2818, “HTTP over TLS”

[RFC5280] IETF, RFC 5280, “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile”

[RFC3550] IETF, RFC 3550, “RTP: A Transport Protocol for Real-Time Applications”

[RFC3840] IETF, RFC 3840, “Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”

[RFC3841] IETF, RFC 3841, “Caller Preferences for the Session Initiation Protocol (SIP)”,

[RFC4346] IETF, RFC 4346, “The Transport Layer Security (TLS) Protocol Version 1.1”

[RFC5019] IETF, RFC 5019, “The Lightweight Online Certificate Status Protocol (OCSP) Profile for
High-VVolume Environments”

[RFC5246] IETF, RFC 5246, “The Transport Layer Security (TLS) Protocol Version 1.2”

[RFC5746] IETF, RFC 5746, “Transport Layer Security (TLS) Renegotiation Indication Extension”

[RFC3986] IETF, RFC 3986, “Uniform Resource Identifier (URI): Generic Syntax”

[RFC6265] IETF, RFC 6265, “HTTP State Management Mechanism”

[MPEG-T7] ISO/IEC 15938-5, “Multimedia Content Description Interface - Part 5:Multimedia description
schemes”, May 2003

[GIF] Graphics Interchange Format. CompuServe, http://www.w3.org/Graphics/GIF/spec-gif89a.txt

[JFIF] JPEG File Interchange Format, Version 1.02, Eric Hamilton, C-Cube Microsystems,
September 1, 1992

[PNG] W3C, Portable Network Graphics (PNG) Specification, November 2003

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 13 (415)

[PRES] OMA, OMA-TS-Presence_SIMPLE_XDM-V1_1-20080627-A, “Presence XDM
Specification”
[IM] OMA, OMA-TS-SIMPLE_IM-V1_0-20080820-D, “Instant Messaging using SIMPLE”

[Web-Storage]

W3C, “Web Storage”, W3C Candidate Recommendation 08 December 2011

[Widgets-Access]

W3C, “Widget Access Request Policy”, W3C Recommendation 7 February 2012.

[Widgets-APIs]

W3C, “Widget Interface”, W3C Candidate Recommendation 13 December 2011

[Widgets-DigSig]

W3C, “XML Digital Signatures for Widgets”, W3C Proposed Recommendation 11 August
2011

[Widgets-Packaging]

W3C, “Widget Packaging and XML Configuration”, W3C Recommendation 27 September
2011

[DLNA] DLNA Networked Device Interoperability Guidelines, August 2009

[TVA-BID] ETSI, TS 102 822-6-1 V1.4.1 (2007-11), “Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems ("TV-Anytime"); Part 6: Delivery of
metadata over a bi-directional network; Sub-part 1: Service and transport”

[TS 101 154] ETSI TS 101 154, “Digital Video Broadcasting (DVB);Specification for the use of Video and
Audio Coding in Broadcasting Applications based on the MPEG-2 Transport Stream”

[1SO 639-2] 1SO 639-2:1998 Codes for the representation of names of languages — Part 2: Alpha-3 code

[Media Fragments URI]

W3C, “Media Fragments URI 1.0, Proposed Recommendation 15 March 2012

[MEDIA_FRAGMENTS_HTTP]

W3C, “Protocol for Media Fragments 1.0 Resolution in HTTP”, W3C Working Draft 1
December 2011,

http://Avww.w3.0rg/TR/2011/WD-media-frags-recipes-20111201/

[DASH]

ISO/IEC 23009-1, Information technology — Dynamic adaptive streaming over HTTP
(DASH) — Part 1: Media presentation description and segment formats

[TS 102 822-3-1]

ETSI TS 102 822-3-1, “Broadcast and On-line Services: Search, select and rightful use of
content on personal storage systems (“TV-Anytime”); Part 3: Metadata; Sub-part 1: Phase 1 -
Metadata schemas”

[TS26234]

3GPP TS 26.234 V9.3.0 (2010-06), Transparent end-to-end Packet-switched Streaming
Service (PSS) Protocols and codecs (Release 9)

2.2 Open IPTV Forum references

[OIPF_SERV2]

Open IPTV Forum, “Services and Functions for Release 2”, V1.0, October 2008

[OIPF_REQS2?]

Open IPTV Forum, “Open IPTV Forum Service and Platform Requirements”, V2.0, December 2008

[OIPF_ARCH?]

Open IPTV Forum, “Open IPTV Forum, Functional Architecture — V2.3”, January 2014

[OIPF_MEDIA?]

Open IPTV Forum, “Release 2 Specification, Volume 2 - Media Formats”, V2.3, January 2014

[OIPF_HAS2]

Open IPTV Forum, “Release 2 Specification, Volume 2a — HTTP Adaptive Streaming”, V2.3,
January 2014

[OIPF_METAZ2]

Open IPTV Forum, “Release 2 Specification, Volume 3 — Content Metadata”, V2.3, January 2014

[OIPF_PROT?]

Open IPTV Forum, “Release 2 Specification, Volume 4 — Protocols”, V2.3, January 2014

[OIPF_PROT2_EX]

Open IPTV Forum, “Release 2 Specification, Volume 4a — Examples of IPTV Protocol Sequences”,
V2.3, January 2014

[OIPF_DAE2_WEB]

Open IPTV Forum, “Release 2 Specification, Volume 5a — Web Standards TV Profile”, V2.3, January

2014

[OIPF_PAE2] Open IPTV Forum, “Release 2 Specification, Volume 6 - Procedural Application Environment”, V2.3,
January 2014

[OIPF_CSP2] Open IPTV Forum, “Release 2 Specification, Volume 7 - Authentication, Content Protection and Service

Protection”, V2.3, January 2014

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 14 (415)

2.3 Informative references

[TS 102 323] ETSI TS 102 323, “Digital Video Broadcasting (DVB);Carriage and signalling of TV-Anytime
information in DVB transport streams”

[TS 102 796] ETSI TS 102 796, “Hybrid Broadcast-Broadband TV”

[RFC6454] IETF RFC 6454, “The Web Origin Concept”, December 2011

[TIMING CONTROL] WS3C, Timing control for script-based animations, W3C Working Draft 21 February 2012

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 15 (415)

3 Conventions and Terminology
3.1 Conventions

All sections and annexes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be

informative.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

In sections of the present document whose presence is indicated by one of the capabilities defined in section 9.3, use of
the [RFC2119] terms “MUST”, “SHALL” or “REQUIRED” applies only when the capability is made available to DAE
applications. They do not have the effect of making that section mandatory.

In this document, “application” means “declarative application” (browser based application) throughout the DAE
platform specification, as opposed to the “procedural applications” (Java based applications) defined in the PAE platform

specification.

In the documented APIs JavaScript attributes are read-write unless otherwise specified.

The type “Integer” is not a valid JavaScript type as is. It is used as a short hand notation for a subset of type
“Number” which includes only the numbers that can be written without a fractional or decimal component.

3.2 Terminology

3.2.1

Definitions

Term

Definition

Audio from memory

Audible notifications and audio clips intended to be played from memory.

Broadcast related
application

Interactive application associated with a television or radio channel, with part of a television channel (e.g.
a particular program or show) or other television content. Often referred to as “red button” applications in
the industry, regardless of how they are actually started by the end user.

Broadcast independent
application

Interactive application not related to any TV channel or TV content or to the currently selected service
provider.

Control Ul The Remote Ul that controls DAE applications in the OITF, sent from an IPTV Applications server via
the OITF or pre-stored in the OITF, and rendered in the DLNA RUIC on the Remote Control Device.
DLNA RUIC A DLNA device with the role of finding and loading remote Ul content exposed by a DLNA RUIS
capability and rendering and interacting with the Ul content.
Note: This terminology references the DLNA RUI specification.
DLNA RUIS A DLNA Function in the OITF with the role of exposing and sourcing Ul content.
Note: This terminology references the DLNA RUI specification.
Embedded object A software module that extends the capabilities of the OITF browser. Features provided by an embedded

object are made available to DAE applications through the methods and properties of a specific
JavaScript object.

HTML document

An XHTML document and associated style and script files conforming to the restrictions and extensions
defined in the present document.

Key Event Event sent to a DAE application in response to input from the end-user. This input is typically generated
in response to the end-user pressing a button on a conventional remote control. It may also be generated
by some other mechanism on alternative input devices such as game controllers, touch screens, wands or
drastically reduced remote controls.

Mandatory The feature is an absolute requirement of the specification (a “MUST” as defined by RFC 2119).

MB or megabyte

2% bytes

Non-visual embedded
object

A non-visual embedded object is an embedded object that has no visible representation and cannot get
input focus

Optional

The feature is truly optional (a “MAY™ as defined by RFC 2119)

Remote Control Device

A mobile or portable device which has the functionality of the DLNA RUIC.

Remote Ul

The display of a Ul from one device on a second (remote) device across a network.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 16 (415)

Service provider related
application

Interactive application related to the service provider selected through the service provider selection

process.

Trick Mode Facility to allow the User to control the playback of Content, such as pause, fast and slow playback,
reverse playback, instant access, replay, forward and reverse skipping.
3.2.2 Abbreviations

In addition to the Abbreviations provided in Volume 1, the following abbreviations are used in this volume.

Abbreviation

Definition

AJAX Asynchronous JavaScript and XML
CRID Content Reference Identifier

Css Cascading style sheets

DOM Document object model

GIF Graphics Interchange Format
HAS HTTP Adaptive Streaming
HE-AAC High Efficiency AAC

IR Infra Red

JPEG Joint Photographic Experts Group
MPD Media Presentation Description
PNG Portable Network Graphics

PSI Public Service Identifier

RCF Remote Control Function

SVG Scalable Vector Graphics

TLS Transport Layer Security

WAVE Waveform audio format

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 17 (415)

4 DAE overview

This specification builds on a selection of W3C specifications defined in [OIPF_DAE2_WEB] with additions defined in
this document in order to expose to an IPTV service provider the capabilities of any particular OITF.

Section 3.1 of this document defines how to interpret [RFC2119] terms like "SHALL" in sections of this document
included in a capability. In sections of this document which are not covered by capabilities, terms like "SHALL" apply as
used in each section.

4.1 Architecture of DAE

The following diagram provides an overview of the OITF architecture in relation to this specification.

OITF AR
HTML SVG
Applications Applications Native
_________________ - Applications
HTML SVG
engine engine

System Services

Content Scheduled
Capabilities Download Recordin Scheduled Content
g L and hybrid tuner ol
. — Metadata
ontent Service Remote 3
. : Messagin
Configuration Protection Management omo Playback
—— : Presence FavouriteL
Application Media Parent Rating
Manager (Widgets) Playback and Control Chat o -
annelScan
Gateway e .
DLNA
Ul Discovery/ Notification Telephony Metadata
Control
Platform Services
0S Graphics User
Input

Figure 1: OITF architecture

The various system services are described below:

Application Manager (Widgets): This service handles the starting and stopping of applications and the downloading,
starting, stopping and removal of widgets. See sections 4.3, 5.1, 5.2.8, 7.2 and 11 of this specification.

Capabilities: This service handles terminal capabilities and exposing them to applications. See sections 7.15.3 and 9.3 of
this specification.

CoD metadata: This service handles the downloading, storage and retrieval of CoD metadata. See section 7.5 of this
specification.

Configurations: This service handles reporting and changing device configuration and power management. See section
7.3 of this specification.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 18 (415)

Content Download: This service handles initiating downloading of content by applications, downloading the content and
managing content once downloaded. See sections 4.6.1 and 7.4 of this specification.

Content Service Protection: This service handles content and service protection. See section 7.6 of this specification.

DLNA RUI: This service enables a DAE application on an OITF to export a user interface to another device in the home
as defined by the DLNA remote Ul specification. See sections 4.9, 7.17 and 8.5 of this specification.

Gateway Discovery/Control: This service handles gateways, including discovery and managing information about them..
See sections 4.2 and 7.7 of this specification.

IMS — Messaging, Presence, Chat, Telephony: This service handles IMS including messaging, presence, chat and
telephony. See section 7.8 of this specification.

Media Playback: This service handles playback of media including streaming on-demand, downloaded content and
scheduled content which has been recorded. Live scheduled content is part of a different service. See sections 4.7.1 and
7.14 of this specification.

Notification: This service handles notifications from the network to the OITF. See section 5.3 of this specification.

Parental Rating and Control: This service handles parental rating and control including reporting of changing of parental
rating status and providing parental rating PIN codes. See sections 4.5, 7.9, 7.13.5 and 7.14.5 of this specification.

Remote Management: This service handles remote management when supported as a DAE application. See section 7.11
of this specification.

Scheduled Content and hybrid tuner — playback, favourite lists, channel scan, metadata: This service handles scheduled
content services whether these are delivered by IP or by a classical cable, satellite or terrestrial tuner in a hybrid device.
See sections 4.7.1.2, 4.8, 7.12 and 7.13 of this specification.

Scheduled Recording: This service handles recording of scheduled content. See section 7.10 of this specification.

NOTE: Native Applications are out of scope of the DAE specification.

4.2 Gateway discovery and control

This section describes how DAE applications discover the information of the gateway and subsequently interacts with the
gateway. The discovery of the IG and AG by the OITF are defined in section 10.1 of [OIPF_PROT2]. The discovery
takes place prior to the DAE application being initialized. The information about the discovered gateways is made
available to DAE applications through the application/oipfGateway Info embedded object. DAE applications
can use this gateway information to interact with the discovered gateways (e.g. IG, AG, CSP gateway and so on). The
application/oipfGateway Info embedded object SHALL be made accessible through the DOM with the interface
as defined in section 7.7.1.

Access to the functionality of the application/oipfGatewaylnfo embedded object is privileged and SHALL
adhere to the security requirements defined in section 10.1

4.3 Application definition

This section defines what is meant by the concept of a ‘DAE application’; which files and assets are considered to be part
of a DAE application and how this relates to DAE application security and lifecycle.

A DAE application is either:

= An associated collection of documents (HTML or SVG where supported) from within a common boundary (see
section 5.1.3 for more details), or

= A Widget as specified in section 4.3.9.

While the application is loaded within the browser, an additional browser object (the oipfApplicationManager
object), defined in section 7.2.1 is present and accessible by the DAE application. The oipfApplicationManager
object provides access to the Application class defined in section 7.2.2.

The difference between a DAE application and a traditional web page is that web pages are stand-alone with no formal
concept of a group of pages or a context within which a group of pages are loaded and execute. For this reason, the
definition and details of a DAE application focuses on the application execution environment and the additional
capabilities provided to DAE applications. The next subsections describe some of the differences. Additional details
about the DAE application lifecycle can be found in section 5.1.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 19 (415)

4.3.1 Similarities between applications and traditional web pages

DAE applications are comprised of pages which are conceptually no different from traditional web pages. Both pages in
a DAE application and traditional web pages can include the contents of other documents. These included documents can
have a variety of types, including Cascading Style Sheets (CSS), JavaScript, SVG, JPEG, PNG and GIF.

A dynamic DOM, combined with XMLHttpRequest, permits AJAX-style changes to the current page in a DAE
application or web page without necessarily replacing the entire document.

4.3.2 Differences between applications and traditional web pages

A DAE application provides shared context and state common to a number of pages — a concept which doesn't formally
exist in the web. Loading and unloading pages within the context of a DAE application is the same as loading and
unloading web pages.

The application context includes information about the state of an application from the platform’s perspective —
permissions, priority (for example, which to terminate first in the event of insufficient resources) and similar information
that spans all documents within an application during the lifetime of that application.

An OITF MAY support the execution of more than one application simultaneously. Applications MAY share the same
screen estate in a defined and controlled fashion. This differs from multiple web pages, which are typically handled
through different browser “windows” or “tabs” and may not share the same screen estate concurrently (although the
details of this behaviour are often browser-dependent). This also differs from the use of frames, which, apart from
iframes, do not support overlapping screen estate. Where simultaneous execution of more than one application is
supported, both foreground and background applications SHALL be supported simultaneously.

Where simultaneous execution of more than one application is supported, applications SHALL be recorded within a
hierarchy of applications. Each object representing an application possesses an interface that provides access to methods
and attributes that are uniquely available to applications. For example, facilities to create and destroy applications can be
accessed through such methods.

4.3.3 The application tree

Where simultaneous execution of more than one application is supported, applications are organised into a tree structure.
Using the createApplication() method as defined in section 7.2.2.2, applications can either be started as child
nodes of the application or as a sibling of the application (i.e. added as an additional child of this application’s parent).
The root node of an application tree is created upon loading an initial application URI or by creating a sibling of an
application tree’s root node. An OITF MAY keep track of multiple application trees. Each of these individual application
trees are connected to a hidden system root node maintained by the OITF that is not accessible by other applications.

Applications created while the DAE environment is running (e.g. as a result of an external notification) that are not
created through createApplication() SHALL be created as children of the hidden system root node.

4.3.4 The application display model
Applications SHALL be displayed on the OITF in one of the application visualization modes as defined in section 4.4.6.

The mode used SHALL be determined prior to initialisation of the DAE execution environment and shall persist until
termination or re-initialization of the DAE execution environment. The means by which this mode is chosen is outside
the scope of this specification.

Each application has an associated DOM Window object and a DOM Document object that represents the document that
is currently loaded for that application. Even “windowless” applications that are never made visible have an associated
DOM Window object.

4.3.4.1 Manipulating an application’s DOM Window object

Standard DOM Window methods are used to resize, scroll, position and access the application document (see section
4.4.6). Many browsers restrict the size or location of windows; these restrictions SHALL NOT be enforced for windows
associated with applications within the browser area. Any area of the display available to DAE applications may be used
by any application. Thus, ‘widget’-style applications can create a small window that contains only the application without
needing to be concerned with any minimum size restrictions enforced by browsers.

4.3.5 The security model

Each application has a set of permissions to perform various privileged operations within the OITF. The permissions that
are granted to an application are defined by the intersection of three permission sets:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 20 (415)

1. The permissions requested by the application, using the mechanism defined in section 10.

2. The permissions supported by the OITF. Some permissions may not be supported due to capability restrictions
(e.g. the permission_pvr permission will never be granted on a receiver that does not support PVR capability).

3. The permissions that may be granted, as determined by user settings or configuration settings specified by the
operator (e.g. blacklists or whitelists; see section 10 for more information). This is a subset of (2), and may be
different for different users.

4.3.6 Inheritance of permissions

Applications created by other applications (e.g. using the methods described in sections 5.1.1.2 or 5.1.1.4) SHALL NOT
inherit the permissions issued to the parent application. The permissions granted to the new application will be defined by
the mechanism specified in section 10.

When an application uses cross-document messaging (see the window . postMessage () method defined in HTML5
Web Messaging as referenced in [OIPF_DAE2_WEB]) to communicate with another application, any action carried out
in response to the message SHALL take place in the security context of the application to which the message was sent.
Applications SHOULD take care to ensure that privileged actions are only taken in response to messages from an
appropriate source.

4.3.7 Privileged application APIs

The privilege model implemented with applications is based upon requiring access to the Application object
representing an application in order to access the privileged functionality related to application lifecycle management and
inter-application communication.

4.3.7.1 Compromising the security

Since applications have access to Appl ication objects, it is possible for applications to compromise the security of the
framework by passing these objects to untrusted code. For example, an application could raise an event on an untrusted
document and pass a reference to its Application object in the message. Where simultaneous execution of more than
one application is supported, any calls to methods on an Appl ication object from pages not running as part of an
application from the same provider SHALL throw an error as defined in section 10.1.1.

4.3.8 Active applications list

Where simultaneous execution of more than one application is supported, the OITF SHALL maintain a list of application
nodes ordered in a “most recently activated” order — the active applications list. This list is used by the cross-application
event dispatch algorithm as defined in section 4.4.7 and is not directly visible to applications.

An application is activated through calling the activate Input() method of the application node. This marks an
application as active and SHALL insert the application at the start of the active application list (removing it from the list
first if it is already present).

An application is deactivated through the deactivate Input() method of the application node. This marks an
application inactive and SHALL remove it from the active application list.

The currently active application is the application at the start of the active application list.

This specification does not define any behaviour if more than one copy of the browser is executing.

4.3.9 Widgets

DAE Widgets are a specialization of DAE applications and share aspects with W3C Widgets.

W3C Widgets are standardized by the “Widgets 1.0 family of specifications” as described in section 1.4 of [Widgets-
Packaging]. Section 11 of this document specifies which parts of W3C Widgets specifications are in supported by DAE
Widgets. From here on, when using the word “Widget” we will refer to DAE Widgets as defined in this specification.

Widgets can be primarily seen as packaged DAE applications. Since they are packaged, it is possible to have a single
download and installation on an OITF. Widgets may also be installed on an OITF via non-HTTP distribution channels
and even over off-network channels (e.g. a USB thumb drive). Packaging also provides an easy way to deploy and/or
update applications on the OITF when it is installed in the home. The packaging and configuration of a DAE Widget is
described in section 11.1.

Since DAE Widgets are DAE Applications everything that is defined for a DAE Application is also applicable to a
Widget unless specified. Furthermore Widgets have several specific features as defined in section 11.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 21 (415)

4.3.10 Origin for Broadcast-delivered Documents

For documents that are delivered by an object carousel in a broadcast channel (as defined in section 4.1 of
[OIPF_MEDIAZ], the following SHALL apply;

= For each broadcast channel, the OITF SHALL generate a unique origin as defined in [RFC6454].

= These origins SHALL be of the form scheme/host/port tuple where the OITF does not use the same scheme for
any documents other than those delivered by a broadcast object carousel.

= The origin SHALL be the one for the channel from which the document was loaded regardless of any
subsequent channel changes

Specifically this origin SHALL be used with the Web Storage API as referenced in [OIPF_DAE2_WEB].

4.4 Resource Management

This section describes how resources (including non-granular resources such as memory and display area) are shared
between multiple applications that may be running simultaneously. Applications SHOULD be able to tolerate the loss of
scarce resources if they are needed by another application, and SHOULD follow current industry best practises in order
to minimize the resources they consume.

This specification is silent about the mechanism for sharing resources between DAE applications and other applications
running on the OITF. In the remainder of this section and this document, the term application refers solely to DAE
applications

4.4.1 Application lifecycle issues

Where simultaneous execution of more than one application is supported, if an application attempts to start and not
enough resources are available, the application with the lowest priority MAY be terminated until sufficient resources are
available for the new application to execute or until no applications with a lower priority are running. Applications
without a priority associated with them (e.g. applications started by the DRM agent, see section 5.1.1.7) SHALL be
assumed to have a priority of Ox7F.

Applications may register a listener for ApplicationUnloaded events (see section 7.2.1.4) to receive notification of
the termination of a child application, where simultaneous execution of more than one application is supported.

Failure to load an asset (e.g. an image file) or CSS file due to a lack of memory SHALL have no effect on the lifecycle of
an application, but may result in visual artefacts (e.g. images not being displayed). Failure to load an HTML file due to a
lack of memory MAY cause the application to be terminated.

4.4.2 Caching of application files

Application files MAY be cached on the receiver in order to improve performance; this specification is silent about the
use of any particular caching strategy.

4.4.3 Memory usage

Applications SHOULD use current industry best practises to avoid memory leaks and to free memory when it is no
longer required. In particular, applications SHALL unregister all event listeners before termination, and SHOULD
unregister them as soon as they are no longer required.

Where available, applications SHALL use explicit destructor functions to indicate to the platform that resources may be
re-used by other applications.

Applications MAY use the gc() method on the application/oipfApplicationManager embedded object to
provide hints to the OITF that a garbage collection cycle should be carried out. The OITF is not required to act on these
hints.

The LowMemory event described in section 7.2.1.4 SHALL be generated when the receiver is running low on memory.
The amount of free memory that causes this event to be generated is implementation dependent. Applications may
register a listener for these events in order to handle low-memory situations as they choose best.

4.4.4 Instantiating embedded objects and claiming scarce system
resources

The objects defined in section 7 of this specification are embedded objects. These are typically instantiated through the
standard DOM 2 methods for creating HTML objects or the oi pFObjectFactory as defined in section 7.1.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 22 (415)

All embedded objects as defined in section 7 SHALL NOT claim scarce system resources (such as a hybrid tuner) at the
time of instantiation. Hence, instantiation SHALL NOT fail if the object type is supported (and sufficient memory is
available).

For each embedded object for which scarce resource conflicts may be a problem, the state diagram and the accompanying
text define how to deal with claiming (and releasing) scarce system resources.

Once an OIPF embedded object has been instantiated, dynamic change of its MIME type which could cause the
properties and methods associated with the object to change SHALL be ignored.

For instance, it is possible to change the MIME type of an A/V Control embedded object from video/mpeg to
video/mp4 but it is not possible to change the MIME type of an OIPF embedded object from
“application/oipfApplicationManager” to “application/oipfConfiguration”

445 Media control

If insufficient resources are available to present the media, the attempt to play the media SHALL fail. For the
video/broadcast object, this shall be indicated by a ChannelChangeError event with a value of 11 for the error state.
For an A/V Control object, the error property shall take the value 3.

When the video/broadcast or A/V Control object either is instantiated in the DYNAMIC_ALLOCAT 10N model or
transitions to the DYNAMIC_ALLOCAT ION model, scarce resources such as a media decoder SHALL only be claimed
following a call to the bindToCurrentChannel (), setChannel (), nextChannel () or prevChannel ()
methods on a video/broadcast object or the play () method on an A/V Control object. By implication, instantiating
a video/broadcast or A/V Control object does not cause the media referred to by the object’s data attribute to start
playing immediately. See section 7.13.1.1 for details of when scarce resources are released by a video/broadcast
object and section 7.14.1.1 when scarce resources are released by an A/V Control object.

Scarce resources can be claimed by the video/broadcast or A/V Control object at instantiation time by specifying the
requiredCapabi lities parameter. In this case the STATIC_ALLOCATION method is used and the scarce resources
are held by the object until it is either destroyed or the release () method is called.

This specification is intentionally silent about handling of resource use by embedded applications including scheduled
recordings.

4.4.6 Use of the display

A compliant OITF SHALL support at least one of the following application visualization modes for managing the display
of applications:

1. Multiple applications may be visible simultaneously, with each application having a full-screen window, with the
OITF managing focus. Setting parts of an application to be transparent SHALL cause the following to be visible
except where the application has drawn Ul elements.

= firstly any applications with a lower Z-index

= secondly video (if the hardware supports overlay as per the <overlay*> elements defined in section 9.2 for the
capability profiles)

In this mode, applications from the same service provider that are intended to run simultaneously SHOULD take
care to co-ordinate their use of the display in order to ensure that important Ul elements are not obscured.

2. Multiple applications may be visible simultaneously, with the OITF managing the size, position, visibility and focus
between applications.

3. Only one application is visible at any time; switching to a different application either hides the currently-visible
application (where simultaneous execution of more than one application is supported) or terminates the currently
visible application (where simultaneous execution of more than one application is not supported). The mechanism
for switching between applications is implementation-dependent. In this case, the show(), hide(),
activatelnput() and deactivate Input() methods of the Application object provide hints to the
execution environment about whether the user should be notified that an application requires attention. The
mechanism for notifying the user is outside the scope of this specification.

Applications SHALL be created with an associated DOM Window object, that covers the display area made available by
the OITF to a DAE application. The size of the DOM Window can be retrieved through properties innerWidth and
innerHeight of the DOM Window object.

Any areas of the browser area outside the DOM Window that become visible when it is resized SHALL be transparent —
any video (if the hardware supports overlay as per the <overlay*> elements defined in section 9.2 for the capability

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 23 (415)

profiles) or applications (if multiple applications can be visible simultaneously) with a lower Z-index will be visible
except where the application has drawn Ul elements.

Broadcast-related and service provider related applications SHALL initially be created as invisible to avoid screen flicker
during application start-up. Once loaded (as SHALL be indicated through an onload event handler), the application then
typically calls the show() method of its parent Application object. Broadcast-independent applications SHALL
initially be created as visible and need not call these methods.

If the application does not ever need to be visible, then its DOM Window object will never be shown. In that case, the
application should take steps to avoid being formatted to reduce computation and memory overheads. This is typically
accomplished by setting the default CSS style of the document’s BODY element to visibility:hidden.

Because all applications have associated DOM Window objects, it is possible to make any application visible even if it is
not normally intended to be visible. This is of particular benefit during debugging of hidden service type applications.

Application developers SHOULD explicitly set the background color of the application <body> and <html> elements.

Setting the background color to ‘transparent’ (e.g. using the CSS construct html, body { background-color:
transparent; }) will allow the underlying video to be shown for those areas of the screen that are not obscured by
overlapping non-transparent (i.e. opaque) children of the <body> element.

Changing the visibility of an application by calling method show() or hide() on the Application object SHALL
NOT affect its use of resources. The application still keeps running and listens to events unless the application gets
deactivated (see section 4.3.8) or destroyed (see section 5.1.2).

4.4.7 Cross-application event handling

As defined in the DOM Level 3 Events specification as referenced in [OIPF_DAE2_WEB], standard DOM events are
raised on a specific node within a single document. This specification extends the event capability of the OITF through
cross-application events handling, but does not change the DOM2 event model for dispatching events within documents.
Where simultaneous execution of more than one application is supported, an OITF SHALL implement the cross-
application events and cross-application event handling model described in this section.

1. AnOITF SHALL implement the following cross-application event handling model. Cancelling the propagation
of an event in any phase SHALL abort further raising of the event in subsequent phases: If an event is eligible
for cross-application event handling (see below for more information) and is targeted at a node in the most
recently activated application, then dispatch the event to that node using the standard DOM bubbling/capturing
of events. Default actions normally taken by the browser upon receipt of an event SHALL be carried out at the
end of this step, unless overridden using the existing DOM methods (i.e. using method preventDefault()).

2. If the cross-application event is not prevented from being propagated beyond the document root node of the
application by using the existing DOM methods, the event is dispatched to other active applications in the
application hierarchy using the active applications list described in section 4.3.8. The OITF SHALL iterate over
the applications in the active application list, from most recently activated to least recently activated, dispatching
the event to the Application object of each application in turn. Note that the event SHALL NOT be
dispatched to the document, and default browser action SHALL NOT be carried out during this phase.
Cancelling the propagation of an event in this phase SHALL abort further raising of the event in subsequent
applications.

Event listeners for cross-application events are registered and unregistered using the same mechanism as for DOM2
events. Listeners for cross-application events may be registered on the Application object as well as on nodes in the
DOM tree.

The following events are valid instances of cross-application events and are applicable for cross application event
handling:

System event Description

KeyPress Generated when a key has been pressed by the user. May also be generated when
a key is held down during a key-repeat.

KeyUp Generated when a key pressed by the user has been released.

KeyDown Generated when a key has been pressed by the user.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 24 (415)

Table 1: Events applicable for cross application event handling

The KeyPress, KeyUp and KeyDown events are all targeted cross-application events. The events are targeted at the
node that has the input focus.

All events dispatched using the standard d i spatchEvent() method are normal DOM events, not cross-application
events. As defined in HTML5 Web Messaging as referenced in [OIPF_DAE2_WEB], the OITF SHALL support the
window. postMessage() method for cross-document messaging. The method takes two arguments; a message (of
type String) to be dispatched and the targetOrigin, which defines the expected origin (i.e. domain) of the target window,
or “*” if the message can be sent to the target regardless of its origin. The target of the event is the “window” of a
specific application. Applications can use this method to send events to other applications. The receiving application
MAY receive those events and interpret them, or MAY dispatch them in its DOM using standard DOM dispatchEvent()
methods.

The visibility of an application SHALL NOT affect the cross-application event handling algorithm as defined above — an
active application SHALL receive cross-application events even when it is not visible.

Incoming key events are dispatched using the cross-application event handling algorithm as defined above.

NOTE: This event dispatch model enables key events to be dispatched to multiple applications. Applications wishing to
become the primary receiver for key events SHOULD call Application.activatelnput(). Even though
Application.activatelnput() is called, another application may subsequently be activated. In order to ensure
that sensitive key input (e.g. PINs or credit card details) is limited only to the application it is intended for, applications
SHOULD check that they are the primary receiver of the key events (using the Application. isPrimaryReceiver
property and/or the ApplicationPrimaryReceiver and ApplicationNotPrimaryReceiver events defined in
section 7.2.6) and SHOULD “absorb’ key events by calling the stopPropagation() method on the DOM2 key
event.

4.4.7.1 Behaviour of the BACK key

OIPF applications may use the methods on the History object to navigate the history list. The history list SHALL NOT
go back beyond the initial page of an OIPF application.

If a remote features a “back” or “back up” key, or one offering similar functionality, the OITF SHALL handle this key as
described below:

1. A VK_BACK key event SHALL be dispatched to applications following the normal key handling process
described in section 4.4.7

2. The default behaviour of the VK_BACK key event is implementation-dependent but the OITF SHALL NOT
load the previous page in its history list for DAE applications.

4.4.8 Tuner resources

Tuners can be used for recording, scanning or watching broadcast channels (e.g. DVB-T). The priority relating to
resource management is as follows. Recording have the highest priority, viewing a channel has the lowest priority. A
record request SHALL not be automatically interrupted by a viewing a channel or a scan request. Note to free the tuner
for viewing requires interrupting the recording first.

4.5 Parental access control

The present document permits a number of different approaches to parental access control.
a. Enforcement in the network.

An IPTV service provider MAY manage parental access control completely in the network. Applications running on
application servers back in the network MAY decide to block access to content or arrange a DAE application to ask for a
PIN code as necessary. This approach can apply to any kind of content - streaming on-demand content, IP broadcast
content and to downloaded content.

No specific support is needed for this approach in the specification.

b. Enforcement in the OITF CSP / CSPG for protected MPEG-2 TS content

IPTV service providers MAY use the content protection mechanism for protected content to enforce access control to
protected content. If used, this enforcement will happen in the OITF and in some cases in the CSP Gateway as well. In
this approach, the content protection mechanism in the OITF would ask for PIN codes as needed.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 25 (415)

The OITF CSP/CSPG-based enforcement of this approach and link to DAE API and events are defined in:
= Section 4.1.5.1 of [OIPF_CSP2], for CSP terminal centric approach,
= Sections 4.2.2,4.2.3.4.1.1.5and 4.2.3.4.1.1.6 of [OIPF_CSP2] for Cl+ CSP Gateway centric approach
= Sections 4.2.2 and 4.2.4.5.1 of [OIPF_CSP2] for DTCP-IP CSP Gateway centric approach

c. enforcementin the OITF

An OITF MAY enforce parental access controls itself. Examples include embedded applications offering access to;
= IP delivered content based on information delivered to the metadata CG client.
= classical broadcast content in hybrid OITFs

= content delivered to the OITF (either streaming or downloaded)

In approaches b) and c), PIN dialogs would be generated by code forming part of the OITF implementation. The APIs in
section 7.9 provide some control over these dialogs. The PIN would typically be configured by an embedded application
but MAY also be configured by a DAE application using the optional APIs defined in section 7.3.2 “The Configuration
class” of the present document.

These approaches b) and c) are reflected in a number of failure modes as defined in the following sections of the
specification;

= For broadcast channels (both IP and hybrid), in section 7.13.1 "The video/broadcast embedded object”, see
onChannelChangeError where errorState 3 is defined as "parental lock on channel”

= Parental rating errors and parental rating changes during playback of A/V content through the AV Control APIs
defined in section 7.14 and the video/broadcast object are reported according to the mechanism described
in section 7.14.5 “Extensions to A/V Control object for parental rating errors” and section 7.13.5 “Extensions to
video/broadcast for parental ratings errors” respectively.

NOTE: Due to the variation in regulatory requirements and deployment scenarios, the present document is intentionally
silent about which of these approaches or combination of approaches is used.

4.6 Content download

The requirements in this section apply if the <download> element has been given value “true” in the OITF’s
capability profile as specified in section 9.3.4.

4.6.1 Download manager

An OITF SHALL support a native download manager (i.e. “Content Download” component) to perform the actual
download and storage of the content, and which allows the user to manage (e.g. suspend/resume, cancel) and monitor the
download, in a consistent manner across different service providers. The download manager SHALL continue
downloading as a background process even if the browser does not have an active session with the server that originated
the download request anymore (e.g. has switched to another DAE application), even after a device power-down or
network failure, until it succeeds or the user has given permission to terminate the download. (see section 4.6.4 on HTTP
Range support to resume HTTP downloads after a power/network failure).

The native download manager SHALL be able to offer a visualization of its status through the
application/oipfStatusView embedded object as defined in section 7.15.2.1.

If the attribute manageDownloads of the <download> element in the client capability description is unequal to
“none”, the native download manager SHALL offer control over the active downloads through the JavaScript API
defined by the application/oipfDownloadManager embedded object in section 7.4.3.

NOTE 1: Once sufficient data of the content has been downloaded, the content MAY be played back using a native
application, and MAY be played back using an A/V Control object. In the latter case, see method setSource() in
section 7.14.7 for more information.

NOTE 2: Annex D clarifies the content download usage scenario in more detail.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 26 (415)

4.6.2 Content Access Download Descriptor

An OITF SHALL support parsing and interpretation of the Content Access Download Descriptor document format with
the specified semantics, syntax and MIME type as specified in Annex E.

4.6.3 Triggering a download

An OITF SHALL support a non-visual embedded object of type “application/oipfDownloadTrigger”, with the
JavaScript API as defined in sections 7.4.1 and 7.4.2 to trigger a download.

The following subsections define some details about the different ways of triggering a download.

4.6.3.1 Using the registerDownload() method

The registerDownload() method takes a Content Access Download Descriptor as one of its arguments and passes it
to the underlying native download manager in order to trigger a download. The following requirements apply:

1. The Content Access Download Descriptor MAY be created in JavaScript or MAY be fetched using
XMLHttpRequest. To this end the OITF SHALL pass the data inside the content access download descriptor
into the XMLHttpRequest.response XML property in JavaScript for further processing, if the OITF encounters
an HTTP response message with the Content-Type of
“application/vnd.oipf.ContentAccessDownload+xml”, as the result of an XMLHttpRequest.

NOTE: The behaviour in other cases when the OITF encounters an HTTP response message with the Content-
Type “application/vnd.oipf.ContentAccessDownload+xml”, for example whilst following a link
as specified by an anchor element (<a>), is not specified in this document.

2. Ifthe OITF supports a DRM agent with a matching DRMSystemID as per section 9.3.10, the OITF SHALL
pass included DRM-information as part of the <DRMControl Information> elements of a content-access
download descriptor to the DRM agent.

3. If the content access descriptor contains multiple content items to be downloaded, then all items are considered
to belong together. Therefore, the download of each individual content item has the same download identifier in
that case (whereby the ContentID may be used for differentiation). The order by which the items are
downloaded is defined by the OITF.

4.6.3.2 Using the registerDownloadURL() method

The registerDownloadURL () method takes a URL as one of the arguments and passes it to the underlying native
download manager in order to trigger a download. The URL MAY point to any type of content. The URL MAY also
point to a Content Access Download Descriptor (i.e. with argument contentType having value
“application/vnd.oipf.ContentAccessDownload+xml™). In that case, the method returns a download
identifier. The OITF will then fetch the Content Access Download Descriptor, after which the same must happen as if
method registerDownload() as defined in section 4.6.3.1 with the given Content Access Download Descriptor as
argument was called.

4.6.3.3 Using the optional registerDownloadFromCRID() method

The registerDownloadFromCRID() method is an optional method as defined in section 7.4.2 and takes a CRID as
one of its arguments that is passed to the underlying native download manager in order to trigger a download.

4.6.3.4 General behaviour regarding triggering a download
The following are general behavioural requirements apply to triggering downloads:

1. Fetching the content will typically be initiated immediately. However, the OITF MAY defer the download to a
later time.

2. An OITF SHOULD offer an easy way to continue the Ul interaction with the server from which a download has
been initiated, e.g. allowing him/her to continue browsing on the page that triggered the download.

3. An OITF SHOULD inform the user if the content-type of a content item being retrieved cannot be interpreted by
the OITF.

4.6.4 Download protocol(s)

The OITF SHALL support the HTTP protocol for download as specified in section 5.3.4 of [OIPF_PROT2]. In addition,
the OITF SHALL support the following requirements:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 27 (415)

1. Asspecified in section 5.3.4 of [OIPF_PROTZ2], if a server offers a content item for download using HTTP, the
server SHALL make sure that HTTP Range requests as defined in [RFC2616] are supported for HTTP GET
requests to the URI of that downloadable content item, in order to be able to resume downloads (e.g. after power
or network failure).

2. Ifthe OITF receives an HTTP 404 “File Not Found” status code, the OITF SHALL stop its attempts to resume
the download, and go to a “Failed Download” state. The handling of other error codes is implementation
dependent.

3. If after downloading a content item the size of the downloaded content item does not match the indicated size
parameter or the value for the optional attribute “MD5Hash” of the given <ContentURL> does not match the
hash of the downloaded content, the OITF SHOULD remove the downloaded content item.

Integration with download protocols other than HTTP are not specified in this document.

4.7 Streaming CoD

This section defines the content-on-demand streaming interfaces for both DRM-protected and non-DRM protected
content.

4.7.1 Unicast streaming

This specification defines 3 mechanisms by which a reference to content can be passed from a DAE application to the
OITF.

1. By setting the data property of a A/V Control object as defined in section 7.14 to the reference. The application
SHALL set the type attribute to the MIME type of the content referred to by the value of the data attribute to
provide a hint about the expected content type, in order for the browser to instantiate the proper object to play
the content.

2. By setting the src attribute of a <video> element to the reference

3. By including the reference in the <ContentURL> element of a Content Access Streaming descriptor as defined
in section 7.14.2 and then setting the data property of an A/V Control object as defined in section 7.14 to be a
reference to that Content Access Streaming Descriptor. In this case the application SHALL set the type
attribute to “application/vnd.oipf.ContentAccessStreaming+xml”.

Example:

<object id="d1l" data=http://www.openiptv.org/fetch?contentlD=25
type="application/vnd.oipf.ContentAccessStreaming+xml"™ width="200"
height="100"/>

This specification defines five different possible formats for a reference to unicast streaming content ;
1. A Public Service Identifier (PSI) as defined in Protocol Specification [OIPF_PROT2].
2. An HTTP URL directly referencing the content to be streamed..
3. An RTSP URL directly referencing the content to be streamed.
4. AnHTTP or HTTPS URL referencing a HAS MPD
5. AnHTTP or HTTPS URL referencing a MPEG DASH MPD
All of the mechanisms that an OITF supports SHALL be supported with all formats of a reference that an OITF supports.

4.7.1.1 HTTP Adaptive Streaming

If the OITF supports HAS content then it SHALL support the MIME type as specified for the Media Presentation
Descriptor (MPD) in [TS26234], i.e. “video/vnd.3gpp.mpd”, and in the HAS specification [OIPF_HAS2]. If the OITF
supports MPEG DASH content then it SHALL support the MIME type as specified for the Media Presentation
Descriptor (MPD) in Annex C of [DASH], i.e. “application/dash+xml”..

The MPD SHALL be retrieved by specifying a URL. To this end, the OITF SHALL fetch the MPD from the URL, after
which the MPD SHALL be interpreted and an initial (set of partial) Representation(s) selected.

When the URL is passed to the OITF in the data property of a A/V Control object as defined in section 7.14, and either
a HAS MPD is not valid according to the XML Schema and semantics as defined in Annex A of [OIPF_HAS?2] or an
MPEG DASH MPD is not valid according to the XML Schema and semantics as defined in [DASH] or [OIPF_HAS?2],
then the A/V Control object SHALL go to play state 6 (‘error’), with error value 4 (‘content corrupt or invalid’).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 28 (415)

If the OITF supports HAS content then HAS SHALL also be supported through the video/broadcast object for live
content. If the OITF supports MPEG DASH content then MPEG DASH SHALL also be supported through the
video/broadcast object for live content. This SHALL be done using Channel objects returned from calls to the
createChannelObject(Integer idType, Integer onid, Integer tsid, Integer sid, Integer
sourcelD, String ipBroadcastlID) method where the idType argument is ID_IPTV_URI and the
ipBroadcastlID argument is a URL which points to an MPD for Scheduled Content (live streaming) over HTTP.

4.7.1.2 Multicast streaming

If an OITF has indicated support for IPTV channels through a <video_broadcast> element with type ID_IPTV_* (as
defined in section 7.13.11.1) the OITF SHALL support passing a content-access descriptor through the
‘contentAccessDescriptorURL’ argument of the ‘setChannel’-method of the video/broadcast object (as
defined in section 7.13.1.3). If the content-access descriptor includes DRM information, the OITF SHALL pass this
information to the DRM agent.

4.8 Scheduled content

If an OITF has indicated support for playback and control of scheduled content through the <video_broadcast>
element, then it SHALL support the “video/broadcast” embedded object defined in section 7.13.1. In addition, it
SHALL adhere to the requirements for conveyance of the channel list as specified in section 4.8.1. To protect against
unauthorized access to the tuner functionality and people’s personal favourite lists, the OITF SHALL adhere to the
security model requirements as specified in section 10.1, in particular the tuner related security requirements in section
10.1.3.1.

NOTE: This section and section 7.13 are focused on control and display of scheduled content received over local tuner
functionality available to an OITF. The term “tuner” is used here to identify a piece of functionality to enable switching
between different types of scheduled content services that are identified through logical channels. This includes IP
broadcast channels (using the mechanisms for Scheduled Content defined in [OIPF_PROT?2]), as well as traditional
broadcast channels received over a hybrid tuner.

NOTE 2: The APIs in this section allow for deployments whereby the channel line-up and favourite lists for broadcasted
content are managed by the client, the server, or a mixture thereof.

4.8.1 Conveyance of channel list

To enable a service to control the tuner functionality on an OITF, the OITF needs to convey the channel list information
that is managed by native code on the OITF device to the service (either the channel list information is provided locally
on the OITF via JavaScript, or the channel list is communicated directly to a server). This information includes the list of
uniquely identifiable channels that can be received by the physical tuner of a hybrid device, including information about
how the channels are ordered and whether or not these channels are part of zero or more favourite lists. It also includes
the channel line-up and the favourite lists that MAY be managed by an OITF for IP broadcast channels.

The API supports two methods of conveying the channel list information to a service:
1. Method 1: through JavaScript, by using the method “getChannelConfig()”, as defined in section 4.8.1.1.

2. Method 2: through an HTTP POST message that is sent upon the first connection to a service that requires tuner
control, as defined in section 4.8.1.2.

An OITF SHALL support method 1, and SHOULD support method 2.

If an OITF conveys the channel list information using the HTTP POST message defined in method 2, then the server
SHALL, if it supports method 2, receive the conveyed channel list information and SHOULD rely on this information for
the purpose of exerting tuner control. If a service supports using the channel list information sent through the HTTP
POST method to exert tuner control , the server SHALL indicate this compatibility with method 2 using the postList
attribute specified in section 9.3.1 (i.e., <video_broadcast postList=""true”>true</video_broadcast>),
in the server capability description.

If the server does not support method 2, the service SHALL rely on the getChannelConfig() method defined in
section 7.13.1.3 to access the channel list information. If an OITF does not support method 2, the HTTP message of the
first connection to the service that requires tuner control SHALL be an HTTP GET message with an empty payload and
the service SHALL instead rely on the getChannelConfig() method defined in section 7.13.1.3 to access the
channel list information. If support for method 2 is indicated by both the OITF and the server (through respective
capability exchanges), the OITF SHALL convey the channel list information using method 2.

If an OITF does not manage/maintain the channel line-up (i.e. does not have a locally stored channel line up), the
getChannelConfig() method described in section 7.13.1.3 SHALL return nul I, and the HTTP message described

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 29 (415)

in section 4.8.1.2 SHALL be an HTTP GET message with an empty payload. In that case, the application MAY use the
createChannelObject() method as defined in section 7.13.1.3 to create channel objects that can be used on
subsequent setChannel () requests, and in this way can manage/maintain its own channel list.

NOTE: conveyance of the channel list SHALL adhere to the security model requirements as specified in sections 10.1.3.1
and 10.1.3.1.1.

4.8.1.1 Method 1: JavaScript method “getChannelConfig()”

The OITF SHALL support method “getChannelConfig()” as defined in section 7.13.1.3 for the
video/broadcast embedded object. This method returns a Channe lConfig object as defined in section 7.13.9.

4.8.1.2 Method 2: HTTP POST message

If an OITF supports sending the channel list through HTTP POST and a server has indicated that it uses the posted
channel list information to exert control of the tuner functionality of an OITF (i.e. using attribute postList=""true” in
the server capability description) for a particular service, then the OITF SHALL issue an HTTP POST over TLS if it
decides to connect to that service. The body of the HTTP POST over TLS request SHALL contain the Client Channel
Listing, which SHALL adhere to the semantics, syntax and XML Schema that are defined for the Client Channel Listing
in Annex G. The server SHALL silently ignore unknown elements and attributes that are part of the Client Channel
Listing.

The server SHALL return a HTML document.

If the favourite lists are not (partially) managed by the OITF, the Client Channel Listing SHALL neither contain the
“FavouriteLists” nor the “CurrentFavouriteList” element.

4.8.2 Conveyance of channel list and list of scheduled recordings

This section and the following sections SHALL apply to OITFs that have indicated <recording>true</recording>
as defined in section 9.3.3 in their capability profile.

To enable a service to schedule recordings of content that is to be broadcasted on specific channels, the OITF needs to
convey the channel list information that is managed by the native code on the OITF. This information typically includes
the channel line-up of the tuner of a hybrid device. The conveyance of channel list information and scheduled recordings
is based on the same two methods of conveying the channel list information to a service as defined in section 4.8.1:

1. Method 1: through JavaScript, by using the method “getChannelConfig()”. To this end, the OITF SHALL
support method “getChannelConfig()” as defined in section 7.10.1.1 for the
application/oipfRecordingScheduler object.

2. Method 2: through an HTTP POST message as defined in section 4.8.1.2 that is sent upon the first connection to a
service that has indicated that it requires control of the recording functionality and that has indicated compatibility
with method 2 using the postL i st attribute specified in section 9.3.3 (i.e., <recording
postList=""true”>true</recording>), in the server capability description for a particular service.

An OITF SHALL support method 1, and SHOULD support method 2. If support for method 2 is indicated by both the
OITF and the server (through respective capability exchanges), the OITF SHALL convey the channel list information

using method 2. Otherwise, the HTTP message of the first connection to the service that requires tuner control SHALL
be an HTTP GET message with an empty payload.

If a server has indicated that it requires control of both the tuner functionality and the recording functionality available to
an OITF (i.e. by including both <video_broadcast> and <recording> with value true in the OITF’s capability
description), the body of the HTTP POST message SHALL contain a single instance of the Client Channel Listing
whereby the <Recordable> element defined in Annex G SHALL be used to indicate whether channels that can be
received by the tuner of the OITF can be recorded or not.

If an OITF does not manage the channel line-up, the getChannelConfig() method described in section 7.10.1.1
SHALL return nul I, and the HTTP message described in section 4.8.1.2 SHALL be an HTTP GET message with an
empty payload.

In addition, the OITF SHALL also support method getScheduledRecordings() as defined in section 7.10.1.1.
This method returns a ScheduledRecordingCol lection object, which is defined in section 7.10.3.

Note that the conveyance of the channel listing and the scheduled recordings is subject to the security model
requirements specified in section 10.1, and in particular the recording related security requirements in section 10.1.3.2.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 30 (415)

4.9 DLNA RUI Remote Control Function

This section describes the DLNA RUI RCF (Remote Control Function) and the interactions between the different entities
involved. It builds on the RUI feature defined by the DLNA Networked Device Interoperability Guidelines (August
2009) [DLNA] and shows how the DLNA RUI can be integrated into an OITF and used by DAE applications.

The DLNA RUI RCEF is the feature that enables a Remote Control Device to be able to control the OITF or a DAE
application running on it, from that Remote Control Device. To support this feature, a Remote Control Device SHALL
support the DLNA RUIC function and an OITF SHALL support the DLNA RUIS function (as defined in section 7.17).

The DLNA RUI RCF provides two main features:
= Providing a Control Ul to the Remote Control Device.

0 The Control Ul is a CE-HTML document through which the user will control the OITF directly or a
DAE application on the OITF. There are two options based on the origin of the Control Ul for sourcing
it as follows:

= Sourcing the Control Ul from the OITF itself.
= Sourcing the Control Ul from an IPTV Applications server via the OITF.
= Interactions to exchange control messages and results

0 The Control Ul in the DLNA RUIC sends control messages to the OITF or DAE application and
receives the corresponding results.

The following sections will introduce the interfaces between the entities that support the DLNA RUI RCF.

4.9.1 Interfaces used by the DLNA RUI Remote Control Function

This section describes interfaces related to the DLNA RUI RCF. There are three entities (Remote Control Device, OITF
and IPTV Applications server) that communicate with each other through the interfaces described in Figure 2.

OITF
DAE
DAE application |« a) > IPTV éggé$atlons
UNIS-6
b)

Remote Control Function
L] embedded object |

7y
d

DLNA Functions

DLNA RUIS

A

e)

Remote Device

A

DLNA RUIC

Figure 2: OIPF architecture with DLNA RUI RCF scenario

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 31 (415)

Figure 2 shows the entities in the OIPF Architecture involved in the DLNA RCF and the interfaces between them.

The dotted line “d)” between the RCF embedded object and the DLNA RUIS indicates that it is a local interface and
hence not defined by this specification. The detailed behaviour of each interface is defined as follows:

1. Interface a)

This interface is used to retrieve a Control Ul from an IPTV Applications server by using XMLHttpRequest
object (the Control Ul retrieved through interface a) will be delivered to DLNA RUIC via interfaces c), d) and
e), sequentially).

2. Interface b)

This interface is used by the DAE browser to retrieve a DAE application containing an RCF object when the
DLNA RUIC requests a DAE application to execute in the OITF.

3. Interface c)

The DLNA RUI RCF APIs use this interface to enable a DAE application to get the request originating from the
DLNA RUIC, through an event dispatched by the OITF, and send the corresponding response or any other
information to the DLNA RUIC via the DLNA RUIS.

4. Interface d)

This is a local interface that is used to pass messages between an RCF object in a DAE application and the
DLNA RUIS.

5. Interface e)

This is a DLNA RUI compatible interface which provides device discovery, sending/receiving HTTP messages
and notifications.

When the DLNA RUIC is activated by a user, the DLNA RUIC searches for a DLNA RUIS and does a
capability exchange. Then, the DLNA RUIC retrieves the XML Ul Listing from the DLNA RUIS and displays it
to the user. When the user chooses one of the Control Uls, the DLNA RUIC retrieves the selected Control Ul
from the DLNA RUIS in the OITF.

The Control Ul may send an HTTP request to deliver a message (for example, plays an AV content) and receive
a response from the DLNA RUIS.

This interface is also used for the DLNA RUIS to send a 3rd party notification defined in section 5.6.1 of [CEA-
2014-A].

6. Interface f)

This interface is used by the selected Control Ul (CE-HTML document) to retrieve resources (For example,
images, CE-HTML documents, or css or JavaScript files) directly from the IPTV Applications server.

4.10 Power Consumption

The power states described in this section relate to states exposed to the DAE application. There may be other states
supported by the OITF which are not described here.

The OITF will be in one of a number of power states. Its default state is “off” which consumes no power. The OITF
SHALL support an “on” state where it is running in normal operation. The OITF SHALL support at least one standby
state where nothing is being output to the display but power is consumed. An OITF may support two different standby
states, “active standby” and “passive standby”. An OITF in the “passive standby” state has the smallest possible power
consumption (for example, average under 1W) which may be in line with European Commission Code of Conduct, US
Energy Star or other regional requirements. In this state the IR listener and wakeup clock MAY be active but no DAE
application is active. The IR listener allows the user to turn on the OITF using a remote control. A DAE application
MAY use the wakeup clock to schedule the OITF enter the “active standby” state, for example to perform a recording.

Note there may be different levels of “active standby” state but the assumption is that, at least, nothing is being output to
the display and one or more DAE applications may execute in the background.

The following explanation describes the behaviour of the OITF when transitioning between the mentioned states and how
a DAE application is affected.

A DAE application SHALL be able to execute in the “on” and “active standby” states but SHALL NOT be able to
execute in the “off” or “passive standby” states.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 32 (415)

When an OITF is turned “on” from an “off” state a DAE application has to be explicitly selected by the user to be
executed or the OITF has identified a DAE application to be auto-started. A DAE application has no direct control if it
shall auto-start or not and this is left for the OITF to manage. A DAE application MAY auto-start if the Service
Discovery and Selection has taken place and the user has selected a service provider.

When an OITF changes to an “off” or “passive standby” state from an “on” or “active standby” state, the DAE
application SHALL get an Appl icationDestroyRequest event. The DAE application has an opportunity to take a
final action and gracefully quit or it shall be killed forcibly.

4.10.1 DAE application wake-up support

The OITF MAY support wake-up requests from a “passive standby” state. There are two types of wake-up requests, one
on an individual DAE application and one on the OITF. The supported wakeup is indicated in the power consumption
capability information.

4.10.1.1 Single DAE application wakeup

The OITF MAY support wake-up requests for individual DAE applications when in “passive standby”. Similar to a
scheduled recording, a DAE application may need to execute at a predetermined time. At the wake-up point the DAE
application executes and when it completes its task returns to a “passive standby” state by exiting.

There SHALL only be one wake-up request per DAE application. There MAY be multiple wake-up requests from
different DAE applications which SHALL execute independently. The OITF SHALL silently ignore all wake-up requests
whose timers expire when it is not in the “passive standby” state.

When the DAE application terminates and the OITF changes to an “active standby” or “on” state for other reasons than a
wake-up request the OITF SHALL NOT change power states.

Through capability information it is possible to determine if wake-up and standby modes are supported by OITF.
This is an example of how a DAE application may setup a wake-up request in OITF.
Precondition: The DAE application is actively running and the OITF is either in “on” or “active standby” states.
1. End user selects to go into “passive standby” natively.
2. AnApplicationDestroyRequest event is generated

3. The DAE application calls the prepareWakeupAppl ication() method and sets a token, time for wake-up
and URI associated with the DAE application. The DAE application then quits, e.g. by calling
destroyApplication() on its parent Appl ication object..

4. The OITF goes into “passive standby” state.

5. When the wake-up time triggers, the OITF changes to “active standby” and the DAE application is initiated with
the URI specified in the prior call to prepareWakeupApplication().

6. The DAE application then runs clearWakeupToken() to get the token set in the prior call to
prepareWakeupApplication().

7. The DAE application executes.

8. Once the DAE application completes execution it shall exit. The OITF changes automatically to a “passive
standby” state.

If the OITF is turned “on” while in this mode the OITF SHALL NOT enter “passive standby” state.

4.10.1.2 OITF wakeup

The OITF MAY support wake-up requests for the OITF when in “passive standby”. The application when receiving an
event onApplicationRequest may request to wake-up the OITF at a set time using method pepareWakeupOITFQ).

OITF SHALL silently ignore all wake-up requests whose timers expire when it is not in the “passive standby” state.

4.10.2 OITF hibernate support

The OITF MAY support a hibernate mode which allows DAE applications and their state to be stored in memory when
in a “passive standby” state. The support of a hibernate mode greatly reduces the start-up time for DAE applications (for
example, start-up times of 3 seconds may be reached).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 33 (415)

When the OITF resumes from the hibernate mode, it SHALL restore all of the previous DAE applications with their
previous state and SHOULD assign the same resources to the DAE applications as they had prior to the hibernate mode.
If this is not possible, the regular callback functions SHALL be used to inform the affected DAE application.

If hibernate mode is supported the event ApplicationHibernateRequest is generated instead of
ApplicationDestroyRequest when the OITF enters a “passive standby” state.

If the OITF supports hibernate mode only the OITF wake-up request is supported. The single DAE application wake-up
SHALL NOT be supported. The reason for this limitation is due to the difficulty to support both options.

A wake-up support SHALL NOT make the OITF resume from the hibernate mode. The wake-up support SHALL be
supported independently.

The OITF SHALL indicate support for hibernate mode through the <hibernateMode> capability defined in section
9.3.19.

4.10.3 State diagram for the power state

The following state machine provides an overview of the power state changes that may occur relating to power
consumption. The transitions in the state machine due to setPowerState() may be also be triggered by user
generated events handled natively by the OITF.

Power provided to OITF
(See notel)

I

Power provided to OITF
Notel

setPowerState("OFF")

User generated event .
handled natively setPowerState("ON”)

PASSIVE_STANDBY] T ON MPASSIVE_STANDBY_HIBERNATE]

setPowerState(setPowerState(
"PASSIVE_STANDBY") "PASSIVE_STANDBY_HIBERNATE")

Expired timer from
prepareWakeupApplication() or

prepareWakeupOITF() setPowerState("ON”) setPowerState("ACTIVE_STANDBY”) Expired timer from
prepareWakeupOITF()

setPowerState(
DAE application exits "PASSIVE_STANDBY_HIBERNATE")

l ACTIVE_STANDBY]/

Figure 3: State diagram of OITF power states

NOTE 1: The transition from the OFF state to the PASS1VE_STANDBY or ON states is manufacturer dependent.

4.11 Display Model

Annex H describes the logical display model of an OITF and the relationship between DAE application graphics and
video.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 34 (415)

5 DAE Application Model
5.1 Application lifecycle

This section describes the lifecycle of a DAE application, including when an application is launched, when it is
terminated and the behaviour when a DAE leaves the boundary of one application and enters another.

APIs related to DAE applications are described in section 7.2 “Application Management APIs”.
5.1.1 Creating a new application
5.1.1.1 General

The present document defines a number of different application lifecycle models. These include;
= Applications started through an OITF-specific user interface
= Using the Application.createApplication() API call
= CE-HTML third party notifications
= Service provider related applications (from SD&S signalling)
= Applications started by the DRM agent
= Applications provided by the AG through the remote Ul
= Broadcast-related applications (either be from SD&S signalling or from broadcast signalling in a hybrid device)
= Broadcast independent applications
= Widgets
5.1.1.2 Broadcast-independent applications

Broadcast-independent applications are started by fetching the first page of the application from a URL.

5.1.1.3 Applications started through an OITF-specific user interface
These SHALL be presented as broadcast-independent applications.

5.1.1.4 Using the Application.createApplication() method

Creating a new application is accomplished by creating a new Appl ication object via the
Application.createApplication() method. Calling this method will create a new application and add it to the
application tree in the appropriate location.

// Assumes that the application/oipfApplicationManager object has the ID
// “applicationmanager”

Var appMgr = document.getElementByld("'applicationmanager');

var self = appMgr.getOwnerApplication(Window.document);

// create the application as a child of the current application
var child = self.createApplication(url_of_application, true);

The URL passed to the createApplication() method SHALL be one of the following;
= AnHTTP or HTTPS URL referring to an XHTML page as defined by section 6.1 of this specification.
= AnHTTP or HTTPS URL referring to an XML AIT as defined by section 5.2.7.1 of this specification.

= The DVB URI for launching service provider related applications signalled through SD&S as defined in section
8.3 of this specification

= The DVB URI for launching broadcast-related applications from the current service signalled through SD&S as
defined in section 8.3 of this specification. Where an OITF supports the MPEG-2 encoding of the AIT as
defined in section 5.2.7.2, this form of the DVB URI SHALL also be supported for launching broadcast-related
applications from the current service when that service includes an MPEG-2 AIT.

5.1.1.5 CE-HTML third party notifications
The lifecycle of these is defined by [CEA-2014-A] and summarised in section 5.3.1 of the present document.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 35 (415)

5.1.1.6 Starting applications from SD&S Signalling

These are described in section 5.2, “Application announcement & signalling”. All applications started by SD&S
signalling are treated as siblings and are children of the hidden system root node (see section 4.3.3).

5.1.1.7 Applications started by the DRM agent

These SHALL be considered as broadcast-independent applications.

5.1.1.8 Applications provided by the AG through the remote Ul

OITFs MAY include the capability to start these applications from an embedded application. OITFs SHALL include the
ability for applications to discover these as defined by the “application/oipfGatewayInfo” embedded object in
section 7.7.1.

5.1.2 Stopping an application

The destroyApplication() method (as specified in section 7.2.2.2) SHALL terminate the application. An
application may register a listener on the ApplicationDestroyRequest event in order to perform any clean-up
before being destroyed completely. After the destroyApplication() method returns, further execution of the
specified application SHALL NOT occur.

When an application is terminated, all associated resources SHALL be freed (or marked available for garbage collection).
Any active network-related sessions will be terminated. Any media content being presented by the application is
stopped, although recordings or content downloads initiated by the application will not be affected.

Note that terminating an application does not imply any effect on the state of the DAE environment.

Additional requirements are defined for stopping selected service provider applications and applications part of scheduled
content services in sections 5.2.4.3 and 5.2.3.2 respectively.

5.1.3 Application Boundaries

All of the pages that make up an application are contained within its application boundary. This is the “fully qualified
domain name” (FQDN) of the initial page of the application in the absence of an application_boundary_descriptor.

If an applicationBoundary element is present in the SD&S signalling for an application as defined in [TS 102 809],
the application boundary SHALL also include the FQDNSs listed in the applicationBoundary element. If this
element is not present, then the application boundary SHALL consist of the FQDN of the initial page of the application.

For files requested with XMLHttpRequest, the same origin policy SHALL be extended using the application domain; i.e.
any domain in the application domain SHALL be considered of same origin.

The OITF SHALL remove any IP address in the application boundary which is within the private address space as
defined in [RFC1918], before launching the application.

Extending the origin of XMLHttpRequest is potentially dangerous, and may lead to undesired leaking of private
information. To make sure that the integrity of the user is not compromised, the OITF SHOULD include a mechanism
which allows the user to exclude domains from application boundaries of applications.

5.2 Application announcement & signalling
5.2.1 Introduction

This specification defines 3 basic types of application;

= Applications related to one or more broadcast TV or radio channels. These MAY run while one of the channels
which they are related to is being presented by the OITF. These are signalled through the SD&S broadcast or
package discovery records or included in an application discovery record which is referenced from the broadcast
or package discovery record.

= Applications related to the service provider selected through the service selection process. These MAY run at
any time until the service provider selection process is repeated and a different service provider selected. These
are signalled through the SD&S service provider discovery record or included in an application discovery record
which is referenced from the service provider discovery record.

= Applications independent of either of the above. These MAY run at any time. These are started by other
applications and are not signalled anywhere.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 36 (415)

Each of these types is described in more detail below.

522 General

Section 4.3.3 of this specification describes how one application may start another application either as a sibling or as a
child. All applications started via SD&S signalling as described in this section SHALL be started as children of the
hidden system root node, as described in section 5.1.1.6.

Any application may be signalled as AUTOSTART or PRESENT (see “Table 3: DAE application control codes” below
and section 5.2.4.3 of [TS 102 809]). Applications signalled as AUTOSTART are intended to be automatically started by
the OITF. Applications signalled as PRESENT are intended to be started only by other applications. Broadcast related
applications may alternatively be signalled as KILL (see below) or PREFETCH.

It is up to the OITF manufacturer to ensure a good quality of experience concerning;
= Navigation within a DAE application.
= Accessing the available DAE applications, both available for launch, and those already running.
= Managing the life cycles of all DAE applications able to be used concurrently.

It is outside the scope of this specification whether there are dedicated keys on a remote control (e.g. the "menu”,
or "guide" key), there is an entry in an on-screen menu or there are some other mechanism.

home™

It is OPTIONAL for the OITF to support an exit mechanism directly accessible by the end-user. If one is supported, it is
outside the scope of this specification whether this mechanism is a button on a remote control, an item in an on-screen
menu or something else. If such a mechanism is supported then it SHALL only stop the application the end-user is
currently interacting with and any child applications of that application. The parent application and any siblings SHALL
NOT be stopped.

Additionally any application MAY be stopped under the following circumstances;
= The application itself exits.
= Its parent application exits.

= Itis stopped by the application which started it or another application which has a reference to its application
object.

= Inresponse to changes in the application signalling as defined below for broadcast related applications and
service provider related applications.

In all these above cases except the first (when an application itself exits) when an application is stopped by the OITF, an
ApplicationDestroyRequest event (as defined in section 7.2.6) SHALL be raised on the application. In the
following error conditions, an application being stopped SHOULD have an ApplicationDestroyRequest event
raised if this is possible.

= The OITF runs out of resources for applications and has to stop some of them in order to keep operating
correctly.

= The OITF has determined that an application is non-responsive or has crashed.

5.2.3 Broadcast related applications

5.23.1 General

Providers of broadcast TV channels may signal broadcast related applications as part of the SD&S broadcast discovery
record (see section 3.2.3 of [OIPF_METAZ2], as well as sections 4.2.1 and 5.4.3.2 of [TS 102 809]). As an optimisation,
broadcast related applications which are associated with a group of channels may be signalled as part of the SD&S
package discovery record (see section 3.2.3 of [OIPF_METAZ2], as well as section 5.4.3.1 of [TS 102 809]). Broadcast
related applications may be included in the SD&S broadcast discovery or package discovery records or included in an
application discovery record which is referenced from the broadcast discovery record.

Broadcast-related applications can also be signalled in-line in an MPEG-2 transport stream using the MPEG-2 encoding
of the AIT as defined in section 5.2.7.2 below.

When a broadcast TV channel starts being presented, the OITF SHALL follow the “Procedure for Starting and Stopping
Broadcast Related Applications on Channel Change” defined in section 5.2.3.3 below.

While a broadcast TV channel is being presented, the OITF SHALL monitor for changes in the SD&S information as
defined by section 4.1.1.2 of [OIPF_METAZ2].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 37 (415)

When changes are detected, the OITF SHALL follow the “Procedure for Starting and Stopping Broadcast Related
Applications When Signalling is Updated” defined below.

NOTE: The typical “red button” behaviour can be achieved by having the first page of an AUTOSTART broadcast
related application be full screen and transparent to video except for an image showing a red button. Only when the user
generates a “red” key event does the application display more of its user interface.

OITFs MAY include the capability to start and stop a broadcast-related DAE application instead of analogue teletext
services as part of a scheduled content service or channel. Typically this would re-purpose the same mechanism used to
start an analogue teletext service — for example a “text” button on a remote control. These are identified using the
application usage mechanism defined in [TS 102 809] and section 5.2.7 below.

5.2.3.2 Stopping

In addition to what is stated in section 5.2.2, broadcast related applications are stopped when

= Changing between channels as defined in the “Procedure for Starting and Stopping Broadcast Related
Applications on Channel Change” below.

= The OITF detects an update to the signalling for a currently presented channel as defined in “Procedure for
Starting and Stopping Broadcast Related Applications When Signalling is Updated” below.

= The OITF stops presenting any broadcast channel.

5.2.3.3 Procedure for starting and stopping broadcast related applications on
channel change

When a scheduled content service is selected, the following SHALL apply;

= The OITF shall determine if there are any applications signalled as part of the service as defined by sections
3.2.3.1and 3.2.3.2 of [OIPF_METAZ].

= Applications which are related to that scheduled content service and which are signalled with a control code of
AUTOSTART SHALL be started if not still running from any previously presented linear TV service. They
SHALL be started commencing with the highest priority application working downwards in priority while
resources in the OITF permit.

= Applications which are related to that scheduled content service, which are signalled with a control code of
AUTOSTART and which are already running from a previously presented scheduled content service SHALL:
a) continue to run uninterrupted if the serviceBound element of the ApplicationDescriptor in their
signalling has value false
b) be stopped and re-started if the serviceBound element of the Appl icationDescriptor in their
signalling has value true

= Applications which are related to that scheduled content service and which are signalled with a control code of
PRESENT SHALL continue to run if already running but SHALL NOT be started if not already running.

= Running applications from any previously presented scheduled content service which are not part of the new
scheduled content service SHALL be stopped as part of the change of presented service.

The following flowchart shows the behaviour that SHALL apply when the selected channel changes:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 38 (415)

New
service
selected

Does the
terminal have an
operational
broadband
connection?

Is an
application
already
running?

Find the Yes
first running

application

Discard any apps signalled
as broadband-only and
discard broadband-specific
signalling for apps signalled
as both broadband and
broadcast

it signalled as
service-bound on
the previous
service?

Yes

Find the next
highest priority
application signalled
as AUTOSTART

Is it signalled
in the new service as
AUTOSTART?

No

signalled
with the control
code
KILL?

Yes

Find the next

_ Kill the cm_JrrentIy i X None
No Kill the running highest priority
application application and transport
restart it

Load the
application from the
specified protocol

Are other

broadcast-related Fle thg s and start it
S running
applications application
running? PP

Did the
application load
uccessfully?

No

Is more than
one simultaneous
application supported,
or are no applications
currently
running?

Is
more than one
simultaneous
application
upported?

Yes

Figure 4: Behaviour when the selected channel changes

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 39 (415)

5.2.3.4 Procedure for starting and stopping broadcast related applications when
signalling is updated
When the application signalling for a scheduled content service is updated, the following apply;

= Applications which are added to the service with a control code of AUTOSTART SHALL be automatically
started when their addition is detected by the OITF. They SHALL be started commencing with the highest
priority application working downwards in priority while resources in the OITF permit. Applications added to
the service with any other control code SHALL NOT be automatically started.

= Applications which are part of the service whose control code changes to AUTOSTART from some other value
SHALL be automatically started unless already running.

= An application which is removed from the service or whose control code changes to KILL SHALL be stopped.

If application signalling is removed from a service, all running broadcast-related applications SHALL be stopped (i.e. the
same behaviour as signalling an empty AIT).

The following flowchart shows the behaviour that SHALL apply when the application signalling for the currently
selected service changes, or when a running broadcast-related application exits:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 40 (415)

AIT
updated

Does the
terminal have an
operational broadband
connection?

Find the first
running
application

Yes Is an application

already running?

Discard any apps that are already
running, or which are signalled as
broadband-only and discard
broadband-specific signalling for
apps signalled as both broadband
and broadcast

Is it still
signalled?

signalled with
the control code

Find the

No next highest priority
Kill the application signalled as
application AUTOSTART
]

Find
the next
highest priority

Are other . transport
broadcast-related Flnirt]r:]?nnext
applications a Iicati%n
running? PP
Load the application
N from the specified
o} .
protocol and start it
Is more than

one simultaneous
application supported,
or are no applications
currently
running?

Did the
application load
successfully?

No

Is more
than one
simultaneous
application
supported?

Yes

@

Figure 5: Behaviour when the application signalling for the currently selected channel changes or when a running
broadcast-related application exits

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 41 (415)

5.2.4 Service provider related applications
5.2.4.1 Signalling

Service providers may signal service provider related applications as part of their SD&S service provider discovery
record (see section 3.2.3 of [OIPF_METAZ2], also sections 4.2.3 and 5.4.3.3 of [TS 102 809] where they are referred to as
“unbound applications”). Service provider related applications may either be directly included in the SD&S service
provider discovery record or included in an application discovery record which is referenced from the service provider
discovery record.

Service providers MAY label one of the applications in their SD&S service provider discovery record using the
application usage values defined in section 3.2.3.3.3 of [OIPF_METAZ2] as follows;

= Aservice discovery application using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:servicediscovery”. An application labelled in this way SHOULD be the
highest priority AUTOSTART application signalled.

= An EPG application using the ApplicationUsage identifier “urn:oipf:cs: ApplicationUsageCS:2009:epg”.
= A VoD application using the ApplicationUsage identifier “urn:oipf:cs:ApplicationUsageCS:2009:vod”.

= A communication service application using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:communication”.

= An application implementing non-native HNI-IGI using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:hni-igi”.

5.2.4.2 Starting

Service provider related applications are started under the following circumstances;

= When a service provider is selected, the OITF SHALL start the AUTOSTART applications signalled by that
service provider starting with the one with highest priority and working downwards in priority unless already
running, while resources in the OITF permit. This process SHALL be repeated if an application previously
launched by this process is closed for any reason. A consequence of this is that AUTOSTART service provider
related applications are always running. Service provider related applications which are not required to be
always running must not be signalled as AUTOSTART themselves but SHOULD be started by AUTOSTART
applications.

= By the end-user using a mechanism provided by the OITF.
= By other service provider related applications.

The OITF SHALL include a mechanism to show the service discovery application and MAY include mechanisms to
show the EPG, VoD and the communication service applications. These mechanisms;

= SHALL load the application into the browser if not already loaded.
= SHALL show this application to the end-user.
= SHALL work at all times when the currently selected service provider has an application labelled in this way.

It is outside the scope of this specification whether these mechanisms are buttons on a remote control, items in an on-
screen menu or something else. If a button is used, this mechanism SHALL work regardless of which application has
focus and the key event corresponding to the button used SHALL NOT be delivered to DAE applications.

5.2.4.3 Stopping
In addition to what is stated in section 5.2.2, service provider related applications are stopped when
= The service provider selection process is re-run and a different service provider is selected.

= The selected service provider updates the list of applications in their SD&S service provider discovery record,
an application is removed and the OITF detects this update (see section 4.1.1.2 of [OIPF_METAZ2]).

5.2.5 Broadcast independent applications

Applications which are independent of both broadcasters and the currently selected service provider are started and
stopped as described in section 5.2.2 “General” above. They do not require any signalling. If they are signalled then this
shall be done using the XML encoding of the AIT as defined in section 5.4 of [TS 102 809]. The XML file shall contain

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 42 (415)

an application discovery record containing exactly one application. The XML file shall be delivered with HTTP or
HTTPS using the “application/vnd.dvb.ait+xml” MIME type as defined in section 5.4 of [TS 102 809].

5.2.6 Switching between applications
Two cases of switching between applications are relevant in this specification;
= Switching between visible applications and invisible ones.

NOTE: Switching between a visible application and an invisible one is conceptually a little like changing
between tabs in a PC browser however without any implication of a particular user interface.

= Switching between simultaneously visible applications where this OPTIONAL feature is supported.

A number of possible mechanisms exist for switching between visible applications and invisible ones. Some examples
include the following;

= Hard coded mechanisms in the terminal for switching to a specific application (e.g. to the service discovery
application, the content guide, the communication service application).

= An OPTIONAL terminal specific Ul showing available DAE applications which the user can switch to.
5.2.7 Signalling format

5.2.7.1 XML Encoding

The following table defines how the signalling defined in [TS 102 809] SHALL be interpreted when used to signal DAE
applications.

Table 2: Application signalling

Descriptor or Element Summary Status in this specification
5.4.4.1 ApplicationList List of Required
applications
5.4.4.2 Application Name, Required
identifier, type
specific
descriptor
5.4.4.3 Applicationldentifier 2 numbers Required
5.4.4.4 ApplicationDescriptor Numerous Required
appllcatlon The serviceBound element is only
attributes

applicable to broadcast related
applications and SHALL be ignored for
other applications.

5.4.4.5 VisibilityDescriptor Attribute — Optional. If this element is not present,
indicate if OITFs SHALL use a default value of
application can VISIBLE_ALL.
be visible to
users and/or
other
applications
5.4.4.6 IconDescriptor Icon for The filename in the IconDescriptor
application SHALL be an HTTP URL. Use of the
icon signalled here by the OITF is
OPTIONAL.
5.4.4.7 AspectRatio Preferred Only relevant if the OITF uses the

aspect ratio for

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 43 (415)

icons IconDescriptor.
5.4.4.8 MhpVersion Specification As defined in section 3.2.3.3.2 of

version [OIPF_METAZ2].
5.4.4.9 StorageCapabilities Can the Ignored

application be

stored or

cached
5.4.4.10 StorageType Enumeration Ignored

used in section

5.4.49 of [TS

102 809]

5.4.4.11 ApplicationType

Application type

For DAE and PAE applications, the
appropriate value from the
ApplicationTypeCS scheme from
[OIPF_METAZ2] SHALL be used.

5.4.4.12 DvbApplicationType

Enumeration
for section
5.4.4.11 of [TS
102 809]

Ignored

5.4.4.13 ApplicationControlCode

Enumeration
for 5.4.4.4 of
[TS 102 809]

See below

5.4.4.14
ApplicationSpecificDescriptor

Container

Ignored

5.4.4.15 AbstractIPService

Supports
grouping of
unbound
applications

Only one group SHALL be signalled

5.4.4.16 ApplicationOfferingType

Used as part of
application
discovery
record

Required

5.4.4.17 ServiceDiscovery

Used as part of
application
discovery
record

Required

5.4.4.18 ApplicationUsageDescriptor

Indicates that
an application
provides a
specific service

Required

5.4.4.19
TransportProtocolDescriptorType

Abstract base
type

Required

5.4.4.20 HTTPTransportType

Type for
applications
accessed by
HTTP

Required

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 44 (415)

5.4.4.21 OCTransportType Type for Ignored
applications
accessed by
DSM-CC object

carousel
5.4.4.22 ComponentTagType Encodes a DVB Ignored
component tag
5.4.4.23 Encodes the Required
SimpleApplicationLocationDescriptor location of the
Type start page of an
application

relative to one
of the transport

types
5.4.4.24 Encodes an Required
SimpleApplicationBoundaryDescriptor application
Type boundary
FLUTESessionDescriptor as defined Support for SHALL be supported if OITFs support
by section B.6 of [OIPF_METAZ2] distributing FLUTE.

applications

through multicast

Elements and descriptors marked as ‘Ignored’ SHALL NOT be processed for DAE applications. Servers MAY include
these in application signalling.

The application control code SHALL be interpreted as follows for DAE applications:

Value Description

AUTOSTART The application is eligible to be started automatically. Sections 5.2.3.1 and
5.2.4.1 above define the order in which AUTOSTART applications are started if
more than one is signalled.

PRESENT The OITF SHALL take no action. The OITF MAY provide a mechanism to
allow the end-user to start applications signalled as PRESENT. However since
there is no requirement for such a mechanism, an IPTV service provider who
signals applications with this control code SHALL provide an application able
to start them.

KILL The application SHALL be terminated (see ApplicationDestroyRequest
in section 7.2.6).

PREFETCH The OITF MAY start fetching files, data or other information needed to start
the application but SHALL NOT start the application. Implementations MAY
consider this control code to be the same as PRESENT.

Table 3: DAE application control codes

The other control codes from [TS 102 809] are not defined for DAE applications. Other control codes are not required to
be supported but MAY be supported if required by another specification. The OITF SHALL discard any AIT entry
containing an unsupported control code.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 45 (415)

5.2.7.2 MPEG-2 Encoding

In a hybrid device where the broadcast channel is based on DVB network technologies and uses DVB-SI as specified in
[EN300468], the OITF SHALL support the MPEG-2 encoding of the AIT from [TS 102 809] as defined in the following
table. This encoding MAY be supported in other devices.

Section Status Notes
5.2.2 Application types M The application type shall be 0x0011.
5.2.3 Application identification M Applications which only need the default

permissions SHALL be signalled using
application_ids from the range for
unsigned applications.

Applications which need more
permissions than the default SHALL be
signalled using application_ids from the
range for signed applications.

The range of application_ids for privileged
applications SHALL NOT be used.

5.2.4 Application control codes M The following control codes shall be
supported:

0x01 AUTOSTART
0x02 PRESENT
0x04 KILL

0x07 DISABLED

The application life cycle shall follow the
rules defined in TS 102 809 [TS 102 809]
and in this specification.

5.2.5 Platform profiles M The encoding of the
application_profile is not defined in
this specification.

The version fields shall be set as follows:
version.major = 2
version.minor = 3

version.macro = 0

5.2.6 Application visibility M
5.2.7 Application priority M
5.2.8 Application icons 0] The icon locator information shall be

relative to the base part (constructed from
the URL_base_bytes) of the URL as
signalled in the
transport_protocol_descriptor.

5.2.9 Graphics constraints -

5.2.10 Application usage M Usage type 0x01 shall be supported as
described in section 5.2.10.2 of [TS 102

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 46 (415)

809].

5.2.11 Stored applications

5.2.12 Application Description File

5.3.2 Program specific information M

5.3.4 Application Information Table M See [OIPF_MEDIAZ2] for MPEG-2 system
related requirements and constraints.

5.3.5.1 Application signalling M

descriptor

5.3.5.2 Data broadcast id descriptor @] The value to be used for the
data_broadcast id field of the
data_broadcast_id_descriptor for OIPF
carousels shall be 0x0150.
By supporting this optional feature,
terminals can reduce the time needed to
mount a carousel.

5.3.5.3 Application descriptor M

5.3.5.4 Application recording -

descriptor

5.3.5.5 Application usage descriptor M Usage type 0x01 shall be supported as
described in section 5.2.10.2 of [TS 102
809].

5.3.5.6 User information descriptors M

5.3.5.7 External application M

authorization descriptor

5.3.5.8 Graphics constraints -

descriptor

5.3.6 Transport protocol descriptors M The following protocol_ids shall be
supported:
0x0001 object carousel over broadcast
channel (as defined in [OIPF_MEDIAZ2])
0x0003 HTTP over broadband
connection

5.3.7 Simple application location M

descriptor

5.3.8 Simple application boundary M Only strict prefixes starting with "dvb://",

descriptor

"http://" or "https://" shall be
supported.

Only prefixes forming at least a second-
level domain shall be supported.

Path elements shall be ignored.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 47 (415)

5.3.9 Service information -

5.3.10 Stored applications -

Table 4: Supported application signalling features

Status Description

M MANDATORY

The signalling may be restricted to a subset specified in the "Notes" column. In that case
all additional signalling is optional.

o OPTIONAL

- NOT INCLUDED

The referenced signalling is not included in this specification.

Table 5: Key to status column

5.2.8 Widgets lifecycle

As Widgets are packaged as ZIP archives, they only require a single download and installation on an OITF before being
executed. Widgets can also be downloaded over non-HTTP distribution channels and even over off-network channels
(USB drives, CD/DVD, etc.).

The Widget lifecycle has 3 main steps:
1. Installation: The Widget is installed on the OITF
2. Execution: The Widget is executed (end eventually stopped)
3. Removal: The Widget is uninstalled from the OITF

Step 1, installation, is only needed before the first execution of the Widget or if its version is obsolete and the user or the
OITF want to update it (see section 5.2.8.4).

Step 2, execution, may be performed at any time after the Widget has been installed. It can be triggered by an action from
the user, or it may be done automatically by the OITF either through a DAE application or a native application in the
OITF. Note that it is not possible to have two running instances of a single Widget simultaneously.

Step 3, removal, is performed if the user wants to uninstall the Widget from the OITF. An uninstalled Widget needs to be
reinstalled by a user to be executed again.

Detail descriptions of each step above are provided in the following sections.

5.2.8.1 Widget installation

In order to be able to execute a Widget, the Widget package first needs to be acquired and installed on the OITF. Steps
for acquiring and processing a Widget package and associated processing rules are described in section 9 of [Widgets-
Packaging]. In this specification the expression “Widget installation succeed” means that the afore-mentioned procedure
is completed successfully.

Although [Widgets-Packaging] does not limit or mandate any specific data transfer protocol or distribution channel
through which Widgets are delivered, an OITF SHALL support the use of HTTP and HTTPS as the transfer protocols.
Support for other transfer protocols is OPTIONAL. Widget installation is done through the
ApplicationManager.instal IWidget() API call. After a call to this function, if the installation succeeds, the
installed Widget SHALL be available in the list of installed Widgets that can be retrieved using
ApplicationManager.widgets. The application installing the Widget is notified about the installation
success/failure through the WidgetiInstal lation event as specified in section 7.2.1.2 and 7.2.1.4.

When installing a Widget, the OITF SHOULD notify the user if there is already an installed Widget with the same “id”
value (where “id” is defined in section 7.6.1 of [Widgets-Packaging] along with the extension defined in section Widgets

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 48 (415)

Packaging and Configuration of this specification). In this case the OITF SHALL proceed as specified in the description
of instal IWidget() method in section 7.2.1.3.

5.2.8.2 Widget execution

In order to be executed, a Widget needs to be installed as described in the previous section. After the installation, a
Widget can be started either using the Application.createApplication() API call or through the
Application.startWidget() API call. The behaviour of these two methods is equivalent. startWidget() is the
preferred method; createApplication() is kept for consistency with other DAE applications. A list of installed
Widgets can be retrieved using Appl icationManager .widgets. Note that only one running instance per Widget at
time is allowed. A Widget can be stopped using Application.stopWidget() or
Application.destroyApplication(). stopWidget() is the preferred method; destroyApplication() is
kept for consistency with other DAE applications.

If the installed Widget has been run on the OITF before, any “storage areas” associated with the Widget, as defined in
[Widgets-APIs], SHALL be restored. Saved data is accessible through the preferences attribute of the Widget object as
defined in section 11.3 of this specification.

See related sections in section 7 for more details about the above mentioned API calls.

5.2.8.3 Uninstalling a Widget

An installed Widget can be uninstalled from an OITF through the ApplicationManager .uninstal IWidget()
API call. Calling this method on a running Widget will cause the Widget to be stopped before the Widget is uninstalled.
The application uninstalling the Widget is notified about the uninstallation success/failure through the
“WidgetUninstallation” event as specified in sections 7.2.1.2 and 7.2.1.4. Any storage areas associated with the
uninstalled Widget SHALL be deleted.

5.2.8.4 Widget updates

An installed Widget can be updated by installing a new version of it.

5.3 Event Notifications

This section describes 4 different notification frameworks (In-session notification based on the home network domain,
In-session notification based on the Internet domain, 3 Party notification based on home network domain, and 3" Party
notification based on the Internet domain) defined by [CEA-2014-A]. Moreover, it defines a new notification framework
for IMS based notifications such as CallerID, Incoming Call Message, and Chat Invite; not only when a DAE application
is active but also inactive.

The event notification mechanism allows OITFs to receive important Ul updates or information from IPTV service
provider or home network devices such as IG, AG or DLNA RUI compatible devices. CEA 2014 mandates 4 unique
notification models which are dependent on whether the server exists on the internet domain or home network domain.
Each of these domain models have two unique scenarios depending on whether or not a DAE application is running. If a
DAE application is active, the in-session notifications are used to support dynamic Ul interaction between the server and
the DAE application without the need to reload the XHTML page. Otherwise, 3" party event notifications should be used
to receive and display a notification message outside of the current user session with a DAE application on the OITF, for
example an event coming from another server, e.g. to receive emergency alerts, or events regarding news, weather, stock
or other information. Generally, 3" party event notification creates a new DAE application to display notification
information.

IMS event notifications for Caller ID, Messaging and Chatting have different behaviour from general event notification
defined by [CEA-2014-A] because IMS communication service should be accessed by authorized users and devices
within the approval of IPTV service provider. Considering the issue of user’s privacy, the DAE specification not only
adopts the general Event Notification Frameworks from [CEA-2014-A] as defined in section 5.3.1, but also defines a new
IMS Event Notification Framework in section 5.3.2.

53.1 Event notification framework based on CEA 2014

An OITF must be capable of displaying various event notifications from both Internet domain and home network
domain. Event notification can be conveyed through active Ul interaction’s channel or out of session. As described in the
diagram below, in-session notification is associated with a running DAE application, whereas a 3" party event
notification is delivered through an independent communication channel. If an OITF receives a 3" party event after
subscribing to a certain internet url or the OITF receives a multicasted event notification message, the OITF needs to
perform 3" party event notification and display its information inside a new DAE application.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 49 (415)

The diagram below describes a general overview of Event Notification architecture.

OITF (Remote Ul Client) Remote Ul Server
Internet Domain Home Network Domain
- IPTV Service Provider : Application Gateway
: 3rd Party Internet Server : IMS Gateway (Setup Page)
Events/notification over
3rd Party Notificaton | _ _ _ _ _ _N Multicastor HTTP__ 3rd Party Notification
Handler Handler
A
Event Event
local script Notification = — 4 — — —| — =P Notification
binding X Handler Evenhts/notification over Handler
: XMLHttpRequest or t
\ 4 NotifSocket y
Userinput | g DAE Application
Handler [" (XHTML Browser) Web Server
local script
binding

Figure 6: General Event Notification Architecture on OITF and Remote Ul Server

In-Session notifications are performed to update partial or whole DAE application Ul through the Noti fSocket object
and/or the XMLHttpRequest object as defined by [CEA-2014-A]. The NotifSocket object creates a persistent TCP
connection between a DAE application and Remote Ul server in order to support burst event notifications. In addition, a
DAE application can create an XMLHttpRequest object to make asynchronous HTTP requests to a web server on the
internet domain. This establishes an independent HTTP connection channel to support XML updates between the DAE
application and the Remote Ul server.

On the other hand, if the OITF receives an incoming notification outside of an active interaction (i.e. session) with the
server, a 3" Party Event Notification must be executed to invoke a DAE application to fetch and render the Ul content
using the url contained within the notification message. This allows servers to “broadcast” important messages, such as
Emergency alert messages, to an OITF at any time, even when the DAE application would currently not be running. This
should be done through a push-method with multicast message for the home network domain. and a pull-method for the
internet case.

The next two subsections describe the requirements for the event mechanisms in more detail.

53.1.1 In-session event notification

In-Session notification can be defined as “Dynamic Ul Update.” With this mechanism, a server should be able to send a
notification message during a Ul interaction to update the Ul dynamically without the need to reload the XHTML-page.
The OITF SHALL support the two following scripting objects for In-session event notification:

= XMLHttpRequest Scripting Object (as defined in the XMLHttpRequest specification as referenced in
[OIPF_DAE2_WEB])

0 The XMLHttpRequest is an embedded object on the browser and enables scripts to make HTTP
request to a web server without the need to reload the page. It can be used by JavaScript to transfer and
manipulate XML data to and from a web server using HTTP, establishing an independent connection
channel between a web server and DAE applications. Whenever a DAE application needs to update the
UI, it sends a request to the Ul server, IPTV service provider or 3 Party Internet Server, to monitor the
change of status or event. In case an event, the Ul server sends an HTTP response to the
XMLHttpRequest.

= NotifSocket Scripting Object (as defined in section 5.5.1 of [CEA-2014-A])

0 Even though support for the XMLHttpRequest object has become more widespread on browsers and
Internet Portal servers, it has a difficulty in supporting dynamic Ul update on home domain’s devices
because it is required to be invoked by the request of XMLHttpRequest on DAE application side.
NotifSocket creates a persistent TCP connection between DAE application and Ul server in order to
support burst event notifications. Whenever the Ul server needs to notify the DAE application running

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 50 (415)

on the OITF of a Ul update, it sends any types of update message, such as encoded binary or string,
through the NotifSocket connection. The NotifSocket object allows an Ul server to push any
event information through the independent TCP/IP channel at any time.

53.1.2 Out of session event notification

Out of session event notifications are defined as “3" Party Notifications” in CEA-2014. Since these notifications are not
part of an active remote Ul interaction with a Remote Ul Server, the OITF must launch a new DAE application to render
the Ul content using the url contained within the notification message.

The OITF SHALL support multicast notifications for 3" party event notifications for the home network domain and the
internet domain respectively as defined below. Support for polling-based notifications as defined below is OPTIONAL
and support can be indicated through the OITF’s capability description by using element <pol lingNotifications>
as defined in section 9.3.14 or the +POLLNOT I'F name fragment as defined in section 9.2.

= Multicast Notifications (as defined in section 5.6.1 of [CEA-2014-A])

0 The OITF SHALL support receiving of Multicast Notifications over multicast UDP, with a UPnP event
message format defined by CEA 2014 if the incoming message comes from home network domain.
After interpreting the message, the OITF should create a new notification window with specified
<ruiEventURL>. In order to ensure a reliable transmission of a multicast notification message, a
Remote Ul Server shall transmit the same notification message, with the same HTTP SEQ header value
2 or 3 times, where the time between transmissions should be a random time between 0 and 10 seconds.

= Polling-based Notification (as defined in section 5.6.2 of [CEA-2014-A]) and Annex O “Changes to section
5.6.2 of CEA-2014-A” in this specification

o0 The OITF SHALL support polling-based 3" Party notifications from an IPTV Service Provider or a 3"
Party Internet Server. To this end, the OITF subscribes to certain URIs to display web contents such as
news, weather, stock or other information from Internet side on executing the
subscribeToNotifications() method. An OITF should poll for notifications even when the CE-
HTML browser is not active. If a new notification is received, this MAY be notified to the user in a
vendor defined way, including direct rendering on the display and using a non-intrusive prompt.

Note that Annex O defines a subscribeToNotificationsASync() method to provide a way of
subscribing to polling-based notifications that is non-blocking.

5.3.2 IMS event notification framework

This section covers the DAE interactions needed to drive the message exchanges on the HNI-IGI interface in the case
where the Service Provider offers an IMS application.

The HNI-IGI framework defines how an OITF interacts with an IMS Gateway (IG) via the HNI-IGI interface
([OIPF_PROTZ2] section 5.2).

Every message on the HNI-IGI interface SHALL be carried in a HTTP transaction where the OITF sends the HTTP
request and the 1G responds to the request. The HNI-IGI In-session framework, in the case of a DAE application, uses the
XMLHttpRequest Script Object, as defined in the XMLHttpRequest specification as referenced in [OIPF_DAE2_WEB].

There are two message directions on the HNI-1GI interface, corresponding to outgoing and incoming messages from and
to the OITF.

5.3.2.1 HNI-IGI transactions for in-session out-going request messages

This message direction applies to outgoing messages from the OITF on the HNI-IGI interface. The OITF sends a request
and the 1G responds to the request. The following figure illustrates the sequences for in-session transactions for outgoing
requests from DAE application to the 1G.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 51 (415)

Outgoing SIP Request from OITF to I1G

0. Prepare Call-1D
for the SIP dialog

2. .0pen(POST,
“<IG_URL>/SIP”)

________________ »
gesejssefﬁierf;ﬁeé‘:eﬁé‘o'TF‘ [H1]. HTTP request [S1] SIP request
q » Regline) POST <IG_URL>/SIP /HTTP 1.1 <SIP Request Line>
"""""""" > X-OITF-Request-Line: <RegLine> <SIP Headers>
4 send (RequestMsgBody) HTTP Bodv: <ReauestMsaBadv> <RequestMsgBody>
---------------- > > >
H2]. HTTP response S2]. SIP response
p p
200 OK <SIP Response Line>
X-OITF-Response-Line: <RespLine> <SIP Headers>
5. onreadystateshange HTTP Body: <ResponseMsgBody> <ResponseMsgBody>

callback

a
a

6. getResponseHeader(“X-OITF-
Response-Line”)

________________ »
7. read
ResponseMsgBody
via responseXML or
responseText ol

Figure 7: HNI-IGI transaction for outgoing SIP requests from a DAE application

0. Prepare the Call-ID for a SIP request. The Call-ID SHALL be generated by the DAE application for an outgoing
SIP request. This Call-ID SHALL be locally unique across all OITFs in a residential network.
NOTE: How uniqueness is achieved is currently not defined.

1. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

2. The DAE application SHALL invoke the open() method to specify the HTTP method and Request-URI for the
request. In this case, the HTTP POST method with the Request-URI of <IG_URL>/SIP SHALL be used as
specified in [OIPF_PROT?2].

3. The DAE application SHALL invoke the setRequestHeader () method to specify the required HTTP
headers as specified in [OIPF_PROT2]. This method SHALL be invoked for each required HTTP header. For
example, the X-OITF-Request-Line HTTP header specifies the SIP request line for the SIP request. The Call-ID
is specified in the X-OITF-Call-1D header.

4. The DAE application SHALL invoke the send() method to send the HTTP request. The SIP Message Request
body is specified in a parameter of this method.

5. When the HTTP response is received, the onreadystatechange callback function SHALL be invoked on
the DAE application.

6. The DAE application SHALL invoke the getRequestHeader () method to retrieve each HTTP header. The
SIP Response Line is specified in the X-OITF-Response-Line header.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 52 (415)

7. Ifthe readyState property of the XMLHttpRequest object has the value 4, the HTTP response body
SHALL be retrieved via the responseXML or responseText properties of the XMLHttpRequest object.
The SIP response body is specified in the HTTP response body.

5.3.2.2 HNI-IGI transaction for in-session incoming reqguest messages

This message direction applies to incoming messages to the OITF on the HNI-IGI interface which are related to an
existing IMS session. An example of this is a SIP NOTIFY message received from the network in response to a previous
SIP SUBSCRIBE sent from the 1G. The OITF sends a HTTP request and the 1G responds to the request when it receives
an incoming message from the network related to an existing session. The following figure illustrates the sequences for
in-session transactions for incoming requests from the 1G to the DAE application.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 53 (415)

In-session incoming SIP request

0. Prepare Contact

and Call-ID for the

SIP dialog 1. new XMLHttpRequest()
2. .0pen(POST,
“<IG_URL>/PENDING_IG”)

________________ »
H1]. HTTP request
3. setRequestHeader(X-OITF- I[:'OS]T <IG UR?_>/PENDING IG
Request-Line, null) JHTTP 1.1 -
______________ X-OITF-Request-Line: null
4 send (null) HTTP Body: <RequestMsgBody>: null
---------------- > >
* HTTP response is pending
until SIP request or time-out
[S1] SIP request
[H2]. HTTP response <SIP Request Line>
200 OK <SIP Headers>
X-OITF-Request-Line: <ReqLine> <RequestMsgBody>
5. onreadystatechange
callback 4 g HTTP Body: <RequestMsgBody>
q-—=-=—=========-=- < <

6. getResponseHeader(“X-OITF-
Request-Line”)

________________ >
7. read ResponseMsgBody via
responseXML or responseText
________________ >
8. new XMLHttpRequest()
9. .open(POST,
“<IG_URL>/PENDING_IG")
________________ >
" [H3]. HTTP request
L SetReqt.eS"fe;der(LX'o'TF' POST <IG_URL>/PENDING_IG [S2]. SIP response
esponse-Line”, RespLine) HTTP 1.1 <SIP Response Line>
"""""""" X-OITF-Response-Line: <RespLine> <SIP Headers>
HTTP Body: <ResponseMsgBody> <ResponseMsgBody>

11 send (ResponseMsgBody)

v
v

* HTTP response is pending
until SIP request or time-out

i If further in-session incoming SIP request are expected for this call-1D, the same sequence from step 4) to step 11) SHOULD be
» followed. This SHALL be done immediately and not wait for a body to be included. In case the DAE application does not need to
1 receive any further incoming in-session SIP requests, the [H3] HTTP POST in step 11 SHOULD be directed to <IG_URL>/SIP.

Figure 8: HNI-IGI transaction for in-session incoming SIP request

0. Prepare the Call-ID for this SIP session for which a message is expected. The Call ID SHALL be the same as
the one created initially for this session.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 54 (415)

1. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

2. The DAE application SHALL invoke the open() method to specify the HTTP method and the Request-URI
for the request. In this case, the POST method with a Request-URI of <IG URL>/PENDING_IG SHALL be
used as specified in [OIPF_PROT?2].

3. The DAE application SHALL invoke the setRequestHeader () method to specify the required HTTP
headers, as specified in [OIPF_PROT?2]. This method is invoked for each HTTP header that is required. In this
case, the X-OITF-Request-Line, which specifies the SIP request line for the SIP request, is set to the value nul .
The SIP Call-ID is specified in the X-OITF-Call-1D header.

4. The DAE application SHALL invoke the send() method to send the HTTP request. For the HTTP request that
sets up the initial long poll, no X-OITF headers are allowed for the HTTP request to the PENDING _IG Request-
URL.

5. When the HTTP response is received, the specified onreadystatechange () callback function is invoked.

6. The DAE application SHALL invoke the getResponseHeader () method to retrieve each HTTP header. The
SIP Request Line is specified in the X-OITF-Request-Line HTTP header.

7. Ifthe readyState property of the XMLHttpRequest object has the value 4, the HTTP response body
SHALL be retrieved via the responseXML or responseText properties of the XMLHttpRequest object.
The SIP response body is specified in the HTTP response body.

8. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

9. The DAE application SHALL invoke the open() method to specify the HTTP method and the Request-URI
for the request. In this case, the POST method with a Request-URI of <IG URL>/PENDING_IG SHALL be
used as specified in [OIPF_PROT?2].

10. The DAE application SHALL invoke the setRequestHeader () method to populate each HTTP header as
specified in [OIPF_PROT?2]. This method SHALL be invoked for each required HTTP header. For example, the
X-OITF-Response-Line specifies the SIP response line for the SIP response. The Call-ID is specified in the
X-OITF-Call-1D header.

11. The DAE application SHALL invoke the send() method to send the HTTP request. If there is a SIP response
body, it is included as a parameter to the send () method. The SIP response body message is carried in the
HTTP body for the HTTP request to the PENDING_IG Request-URI.

In the case where the OITF does not need to receive any further incoming in-session SIP requests, the HTTP POST in
step 11 SHALL be directed to the <IG_URL>/SIP Request-URI.

5.3.2.3 HNI-IGI transaction for out of session incoming request messages

This message direction applies to incoming messages on the HNI-IGI interface which are not related to an existing
session. An example of this is a SIP MESSAGE message received from the network, coming e.g. froman IPTV
application or from another user. The following figure illustrates the sequences of out-of-session transactions for in-
coming requests from the 1G to OITF.

Figure 9 describes what happens when the OITF is first turned on.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 55 (415)

OITF
DAE app Registration Function 1G
‘ — ‘ ‘ : ‘ IMS CS
(javascript) (native code)

1. HNIIGI (IG, REGISTRATION (user_default, icsi))

2. REGISTER (user_default, ICSI)

_ 4.200 OK A $20008 ‘
Start Pending_IG] !
for incoming
requests | 1 TTT=-—_=___ !

new dialog ~~----___5. HNI_IGI (PENDING_IG, user_default, call_id (null))

‘6. Perform SD&S and start DAE app.

7. SubscribeNotification (user_default, icsi(s))

8. HNI_IGI (IG, REGISTRATION (user_default, icsi(s))

Application to be nofified of ‘ 9. REGISTER (user_default, ICSI)

new dialog requests for
default user

| 10. 200 OK

Figure 9: What happens when the OITF is first turned on

1. When the OITF is turned on the OITF SHALL send a HNI_IGI IG registration message to register the default
user.

The I1G Registers the default user in the IMS network.
The IMS network returns 200 OK.
a 200 OK message SHALL be returned on the HNI_IGI.

If there are native IMS applications that may receive unsolicited messages the OITF SHALL send a
PENDING_IG message to the IG, for the default user and with the call_id set to null 1. The steps to send
PENDING_IG are the same as steps 8-11 from section 5.3.2.2 “HNI-IGI transaction for in-session incoming
request messages”.

a > w DN

6. The OITF performs service selection and discovery and loads the initial DAE page.

7. DAE IMS applications that desires to receive unsolicited notifications SHALL issue a
subscribeNotification() method (as defined in section 7.8.1.3).

8. When applicable the OITF SHALL send a HNI_IGI IG registration message to re-register the default user,
including new applications.

9. The IG re-registers the default user in the IMS network.
10. The IMS network returns 200 OK.
11. A 200 OK message SHALL be returned on the HNI_IGI.

Figure 10 describes what happens when a specific user logs in using the DAE interface.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 56 (415)

OITF
DAE app Registration Function
1G IMS CS
(javakcript) (native code)

1. registerUser (user_1)
|

Pl
2. HNL_IGI (IG, registration (user_1, icsi))
| |

A

3. REGISTER (user_1, ICSI)

4. 200 OK

|
|
|
t
|
|
|
|
|

5.2000K |

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| I
——e_

7. subscribeNotification (ICSI) | Te———
! i | -

|

|

|

|

. |
6. HNI_IGI PENDING_IG, user_1, dall_id (Null)) }
= |
|

|

|

|

|

|

— _ | Start initial
Pending_ig
for current user

7/
7
7/
7
7/

|
|
|
Application to be notified of |
new dialog requests for |
|
|
|
|
|
|

8. HNLIGI (IG, registration (user_1, icsi))

#
|
|
|
|
|

9. REGISTER (user_1, ICSI)

|
|
|
|
.
|
current user |
|

Figure 10: User logs in using the DAE interface

When the user desires to login the DAE SHALL call the registerUser () method to register the user.
The OITF SHALL send a HNI_IGI IG registration message to register the user.

The 1G Registers the user in the IMS network.

The IMS network returns 200 OK.

A 200 OK message SHALL be returned on the HNI_IGI.

If there are native IMS applications that may receive unsolicited messages the OITF SHALL send a
PENDING_IG message to the IG, for the default user and with the call_id set to null 1. The steps to send
PENDING _IG are the same as steps 8-11 from section 5.3.2.2 “HNI-IGI transaction for in-session incoming
request messages”.

o g > w bhPE

7. DAE IMS applications for the user that desires to receive unsolicited notifications SHALL issue a
subscribeNotification(icsi) method (as defined in section 7.8.1.3).

8. When applicable the OITF SHALL send a HNI_IGI IG registration message to re-register the user, including
new applications.

9. The IG re-registers the default user in the IMS network.
10. The IMS network returns 200 OK.
11. a200 OK message SHALL be returned on the HNI_IGI.

Figure 11 describes what happens when an unsolicited message arrives from the network. The precondition is that a DAE
application is already running and subscribed to the IMS notifications (refer to previous sequence when user logs in).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 57 (415)

with a configurable timeout.

DAE app ‘ Registration Function ‘ -7

(javascript) (native code) -~ |wscs

OITF Buffer incoming message ﬁ

-

P Sip_message_x (body)

T
| |
T |
| |
| |
| |
| K
| |

T
|
2.200 OK (NOTIFICATION_NEW_DIAL, to, call_id, <HTTP headers>,<SIP headers>,[<SIP body>]))
i I
i
I
i

! =~
Start new i | b~
new-dialog Pending-1G ——a 3:._H‘TTP POST (PENDING_IG, user_default, call_id (null))~~~_ _

7 Notify Application
registration function that
new dialog request received
for call_id

4. onNotification ((to, from, caII_id, [icsi],<HTTP headers>,<SIP headers>,[<SIP bod)}>]))

I I I
5. HNI_IGI (IG MESSAGE, call_id, <HTTP headers>,<SIP headers>,[<SIP body>])

Figure 11: Unsolicited message from the network

1. A SIP message arrives from the network.
2. The IG responds to the PENDING_IG request.

3. The OITF SHALL immediately issue a new PENDING _IG request after receiving a response on a
PENDING_IG request. The steps to send PENDING_IG are the same as steps 8-11 from section 5.3.2.2 “HNI-
IGI transaction for in-session incoming request messages”.

4. The OITF SHALL call the callback function onNoti fication for the corresponding application. This
includes the IMS message.

5. The OITF MAY respond to the network with a new outgoing message. The steps to send PENDING_IG are the
same as steps 8-11 from section 5.3.2.2 “HNI-IGI transaction for in-session incoming request messages”.

6. If the OITF sends a message the IG SHALL forward it to the network.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 58 (415)

6 Formats
6.1 Web Standards TV Profile

An OITF SHALL support the Web Standards TV Profile defined in [OIPF_DAE2_WEB]. The MIME type used for DAE
documents SHALL be one of the MIME types defined in the HTML5 specification as referenced by
[OIPF_DAE2_WEB] for HTML or XHTML documents, or the value ‘application/cehtml+xml ;
charset="UTF8""’.

6.1.1 Additional restrictions and requirements

= The following properties and methods SHALL be supported on the window object as defined in section “The
window Object” of the HTMLS5 specification as referenced in [OIPF_DAE2_WEB] with additional
requirements relating to integration with APIs and mechanisms defined in this document:

o0 close(): calling this method on the Window object of a DAE application SHALL be equivalent to
calling method destroyApplication() of the DAE application (as defined in section 7.2.2.2).

0 blur(): calling this method on the Window object of a DAE application SHALL not deactivate the
application as defined in section 4.3.8 of this specification.

= Window scripting object support for the additional methods defined in Annex O is indicated by the
<pollingNoatifications> element in the device capabilities as defined in section 9.3.14.

= An OITF SHALL offer a means to set focus to the following elements in a HTML document by using key-based
input: <a>, <area>, all form elements, <iframe>, and <object> elements of type “video”. These elements
SHALL have the tabindex focus flag set (see section 7.4.1 of the HTMLS5 specification as referenced by
[OIPF_DAE2_WEB]).

= AnOITF SHALL allow the user to manually trigger elements that have an activation behaviour, for instance
using keyboard input.

NOTE: Section 3.2.5.1.7 ("Interactive content™) of the HTML5 specification as referenced by
[OIPF_DAE2_WEB] includes similar requirements however using "SHOULD" not "SHALL".

6.2 Still image formats

The following still image formats SHALL be supported:
= GIF as defined in [GIF]
= PNG as defined in [PNG]

= JPEG as defined in [JFIF] except that support for lossless and hierarchical modes and arithmetic coding of DCT
coefficients is OPTIONAL. The thumbnail feature of [JFIF] is OPTIONAL. OITFs not supporting thumbnails
SHALL skip them if present and continue decoding the rest of the image.

6.3 Media formats

This section describes the main requirements for the format and usage of codecs in media referred to by DAE
applications. This section also describes memory audio.

6.3.1 Media format of A/V media except for audio from memory
This section describes the format and usage of the A/V media codec except for audio from memory.

= Format and usage of video codecs SHALL adhere to section 5 of [OIPF_MEDIAZ2].

= The format and usage of subtitle streams SHALL adhere to section 6 of [OIPF_MEDIAZ2].

= The format and usage of teletext information SHALL adhere to section 7 of [OIPF_MEDIAZ2].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 59 (415)

= The format and usage of audio codecs SHALL adhere to section 8 of [OIPF_MEDIAZ2], except for sections
8.1.1.2, 8.1.5 and 8.2.1 which are covered in section 6.3.2.

6.3.2 Media format of A/V media for audio from memory

This section describes the format and usage of the A/V media codec for audio from memory. Usage of corresponding
A/V media object is described in section 7.14 of this specification.

For the audio from memory format, HE-AAC SHALL be supported by the OITF and WAVE MAY be supported by the
OITF.

= The format and usage of HE-AAC audio from memory SHALL adhere to section 8.1.1.2 and 8.2.1 of
[OIPF_MEDIA2].

= The format and usage of WAVE audio from memory SHALL adhere to section 8.1.5 and 8.2.1 of
[OIPF_MEDIAZ2].

6.3.3 Media transport

The format and usage of media transports referred to by DAE applications SHALL adhere to section 4 of
[OIPF_MEDIA2].

6.4 SVG

Integration between SVG and HTML is defined in the HTMLS5 specification as referenced in [OIPF_DAE2_WEB].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 60 (415)

7 APIs

7.1 Object factory API

This section defines the methods to check and create an instance of the DAE defined embedded objects within

JavaScript.

The OITF SHALL support an object of type “Oi pFObjectFactory” as a property "oipfObjectFactory" of the
script’s global object (as defined in the HTMLS5 specification as referenced by [OIPF_DAE2_WEB]) with the API as
defined in this section. The object factory SHALL ensure that the referenced objects are correctly set up. This is an
alternative to instantiating embedded objects (or plug-ins) outside of JavaScript.

7.1.1 Methods

Boolean isObjectSupported(String mimeType)

Description This method SHALL return true if and only if an object of the specified type is supported by
the OITF, otherwise it SHALL return false.
Arguments mimeType If the value of the argument is one of the MIME types defined in tables 1

to 4 of [OIPF_MEDIAZ2] or one of the DAE defined mime types listed
below then an accurate indication of the OITF’s support for that MIME
type SHALL be returned.

For other values, it is recommended that an OITF returns a value which
accurately reflects its support for the specified MIME type.

DAE MIME Type

application/notifsocket

application/oipfApplicationManager

application/oipfCapabilities

application/oipfCodManager

application/oipfCommunicationServices

application/oipfConfiguration

application/oipfDownloadManager

application/oipfDownloadTrigger

application/oipfDrmAgent

application/oipfGatewaylnfo

application/oipfCommunicationServices

application/oipfMDTF

application/oipfParentalControlManager

application/oipfRecordingScheduler

application/oipfRemoteControlFunction

application/oipfRemoteManagement

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 61 (415)

application/oipfSearchManager

application/oipfStatusView

video/broadcast

7.1.1.1 Visual objects

The methods in this section all return HTMLOb jectElement objects which can be inserted in to the DOM tree. All
objects in section 7 which have a visual representation on the screen can be created using methods in this section. Only
for objects defined in section 7, that are supported by the device (i.e. as indicated through the client capability
description), a corresponding method name to instantiate the object through the Oi pfObjectFactory class can be
assumed to be present on the oipfObjectFactory object. For any other object, a corresponding method name cannot
be assumed to be present.

HTMLObjectElement createVideoBroadcastObject(
StringCollection requiredCapabilites)

HTMLObjectElement createVideoMpegObject(StringCollection requiredCapabilities)
HTMLObjectElement createStatusViewObject()

Description If the object type is supported, each of these methods shall return an instance of the
corresponding embedded object.

Since objects do not claim scarce resources when they are instantiated, instantiation shall
never falil if the object type is supported. If the method name to create the object is not
supported, the OITF SHALL throw an error with the error.name set to the value
"TypeError".

If the object type is supported, the method shall return an HTMLOb jectElement equivalent
to the specified object. The value of the type attribute of the HTMLObjectElement SHALL
match the mimetype of the instantiated object, for example "video/broadcast" in case of
method oipfObjectFactory.createVideoBroadcastObject().

Arguments requiredCapabilities An optional argument indicating the formats to be supported by
the resulting player. Each item in the argument SHALL be one of
the formats specified in [OIPF_MEDIA2]. Scarce resources will
be claimed by the object at the time of instantiation. The
allocationMethod property SHALL be set
STATIC_ALLOCATION. If the OITF is unable to create the player
object with the requested capabilities, the method SHALL return
null.

If this argument is omitted, objects do not claim scarce resources
so instantiation shall never fail if the object type is supported. The
al locationMethod property SHALL be set to
DYNAMIC_ALLOCATION

7.1.1.2 Non-Visual objects

The methods in this section all return JavaScript objects which implement the interfaces of their corresponding objects.
They can not be inserted in the DOM tree. All objects in section 7 which do not have a visual representation on the
screen can be created using methods in this section. Only for objects defined in section 7, that are supported by the device
(i.e. as indicated through the client capability description), a corresponding method name to instantiate the object through
the OipfObjectFactory class can be assumed to be present on the oipfObjectFactory object. For any other
object, a corresponding method name cannot be assumed to be present.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 62 (415)

Object
Object

createApplicationManagerObject()
createCapabilitiesObject()

ChannelConfig createChannelConfig()

Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object
Object

createCodManagerObject()
createConfigurationObject()
createDownloadManagerObject()
createDownloadTriggerObject()
createDrmAgentObject()
createGatewaylnfoObject()
createlMSObject()
createMDTFObject()
createNotifSocketObject()
createParentalControlManagerObject()
createRecordingSchedulerObject()
createRemoteControlFunctionObject()
createRemoteManagementObject()
createSearchManagerObject()

Description

return the same instance.

"TypeError".

If the object type is supported, each of these methods SHALL return an instance of the
corresponding embedded object. This may be a new instance or existing instance. For
example, the object will likely be a global singleton object and calls to this method may

Since objects do not claim scarce resources when they are instantiated, instantiation
SHALL never fail if the object type is supported. If the method name to create the object is
not supported, the OITF SHALL throw an error with the name property set to the value

If the object is supported, the method SHALL return a JavaScript Ob ject which
implements the interface for the specified object.

7.1.2

Examples

This section provides examples of the usage of the methods.

The first example shows how to query whether an instance of the A/V Control object for a specified MIME type can be

created without the application having to attempt to instantiate the object.

var videoPlayer;
if (window.oipfObjectFactory. isObjectSupported(*'video/mpeg™)) {
videoPlayer = window.oipfObjectFactory.createVideoMpegObject();

// append object to document

document.getElementByld("playerDiv").appendChild(videoPlayer);

videoPlayer.data = "'rtsp://server/barker_channel";

If the OITF does not support the created object the OITF SHALL throw an error with the error.name set to the value
"TypeError". The example below shows how this can be used by applications:

try {
configuration = window.oipfObjectFactory.createConfigurationObject();

catch (error) {
alert(application/oipfConfiguration object could not be created - error name: " +
error._name + " - error message: " + error.message);

}

Volume 5 —

Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 63 (415)

7.2 Application Management APIs

An OITF providing DAE application capability SHALL implement the behaviour of the classes defined in this section.

7.2.1

The application/oipfApplicationManager embedded object

An OITF SHALL support a non-visual embedded object of type “application/oipfApplicationManager”, with
the following JavaScript API, to enable applications to access the privileged functionality related to application lifecycle
and management that is provided by the application model defined in this section.

If one of the methods on the application/oipfApplicationManager is called by a webpage that is not a
privileged DAE application, the OITF SHALL throw an error as defined in section 10.1.1.

7.2.1.1 Constants
The following constants are defined as properties of the application/oipfApplicationManager embedded
object:
Name Value Use
WIDGET_INSTALLATION_STARTED 0 The Widget installation has started. This state
SHALL be used to indicate that the download
of the Widget package is completed (possibly
because the Widget was already stored
locally) and the OITF is ready to start the
Widget installation process. This state SHALL
NOT be signalled if the package download
fails.
WIDGET_INSTALLATION_COMPLETED 1 The Widget installation has completed
successfully
WIDGET_INSTALLATION_FAILED 2 The Widget installation has failed either
because the Widget package download failed
or because, after the download, the Widget
installation process failed.
WIDGET_UNINSTALLATION_STARTED 3 The Widget uninstallation has started
WIDGET_UNINSTALLATION_COMPLETED 4 The Widget uninstallation has completed
successfully
WIDGET_UNINSTALLATION_FAILED 5 The Widget uninstallation has failed
WIDGET_ERROR_STORAGE_AREA_FULL 10 The local storage device is full
WIDGET_ERROR_DOWNLOAD 11 The Widget cannot be downloaded
WIDGET_ERROR_INVALID_ZIP_ARCHIVE 12 The Widget package is corrupted or is an
Invalid Zip Archive (as defined in [Widgets-
Packaging])
WIDGET_ERROR_INVALID_SIGNATURE 13 Widget's Signature Validation failed
WIDGET_ERROR_GENERIC 14 Other reason
WIDGET_ERROR_SI1ZE_EXCEEDED 15 The Widget exceeded the maximum size for a

single widget allowed by the platform, as
defined in section 9.1.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 64 (415)

WIDGET_ERROR_PERMISSION_DENIED 16 The user and/or the OITF denied the
installation or update of a Widget

7.2.1.2 Properties

function onLowMemory()

The function that is called when the OITF is running low on available memory for running DAE applications.
The exact criteria determining when to generate such an event is implementation specific.

function onApplicationLoaded(Application appl)

The function that is called immediately prior to a load event being generated in the affected application.
The specified function is called with one argument appl, which provides a reference to the affected
application.

function onApplicationUnloaded(Application appl)

The function that is called immediately prior to an unload event being generated in the affected
application. The specified function is called with one argument appl, which provides a reference to the
affected application.

function onApplicationLoadError(Application appl)

The function that is called when the OITF fails to load either the file containing the initial HTML document of
an application or an XML AIT file (e.g. due to an HTTP 404 error, an HTTP timeout, being unable to load
the file from a DSM-CC object carousel or due to the file not being either an HTML file or a XML AIT file as
appropriate), All properties of the Application object referred to by appl SHALL have the value
undefined and calling any methods on that object SHALL fail.

function onWidgetinstallation(WidgetDescriptor wd, Integer state,
Integer reason)

The callback function that is called during the installation process of a Widget. The function is called with
three arguments:

e WidgetDescriptor wd - the WidgetDescriptor for the installed Widget. Some attributes of this
argument may not have been initialised and may be null when the function is called until the
Widget is successfully installed.

e Integer state - the state of the installation; valid values are:
0 WIDGET_INSTALLATION_STARTED
O WIDGET_INSTALLATION_COMPLETED
O WIDGET_INSTALLATION_FAILED

as defined in section 7.2.1.1.

e Integer reason: indicates the reason for installation failure. This is only valid if the value of the
state argument is WIDGET_INSTALLATION_FAILED otherwise this argument SHALL be null.
Valid values for this field are:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 65 (415)

WIDGET_ERROR_STORAGE_AREA_FULL
WIDGET_ERROR_DOWNLOAD
WIDGET_ERROR_INVALID_ZIP_ARCHIVE
WIDGET_ERROR_INVALID_SIGNATURE
WIDGET_ERROR_GENERIC
WIDGET_ERROR_SI1ZE_EXCEEDED

o WIDGET_ERROR_PERMISSION_DENIED

as defined in section 7.2.1.1.

O O O O O o©

function onWidgetUninstallation(WidgetDescriptor wd, Integer state)

The function that is called during the uninstallation process of a Widget. The function is called with two
arguments, defined below:

e WidgetDescriptor wd - the WidgetDescriptor of the Widget to be uninstalled.
e Integer state - the state of the installation; valid values are:
0 WIDGET_UNINSTALLATION_STARTED,

0 WIDGET_UNINSTALLATION_COMPLETED
0 WIDGET_UNINSTALLATION_FAILED

as defined in section 7.2.1.1.

readonly WidgetDescriptorCollection widgets

A collection of WidgetDescriptor objects for the Widgets currently installed on the OITF.

7.2.1.3 Methods

Integer getApplicationVisualizationMode()

Description Returns the current mode used by the OITF to visualize applications, whereby a return
value:
1 corresponds to the application visualization mode as defined by bullet 1) of

section 4.4.6, i.e. multiple applications visible simultaneously with DAE
applications managing their own visibility

2 corresponds to the application visualization mode as defined by bullet 2) of
section 4.4.6, i.e. multiple applications visible simultaneously with OITF
managing the size, position, visibility of applications

3 corresponds to the application visualization mode as defined by bullet 3) of
section 4.4.6, i.e. only a single application visible at any time.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 66 (415)

Application getOwnerApplication(Document document)

Description Get the application that the specified document is part of. If the document is not part of an
application, or the calling application does not have permission to access that application,
this method will return nul I.

Arguments document The document for which the Application object should be obtained.

ApplicationCollection getChildApplications(Application application)

Description Get the applications that are children of the specified application.

Arguments application The application whose children should be returned.

void gcQ

Description Provide a hint to the execution environment that a garbage collection cycle should be

initiated. The OITF is not required to act upon this hint.

void installWidget(String uri)

Description Attempts to install on the OITF a Widget located at the URI passed. If the Widget is
stored on a remote server it SHALL first be downloaded. This specification does not
specify where the OITF stores the Widget package, nor does it define what happens to
the original package after the installation process has finished (regardless of whether it
succeeded or failed).

When trying to install a Widget with an “id” that collides with the id of an already installed
Widget (where the “id” is defined in section 7.6.1 of [Widgets-Packaging] along with the
extension defined in section 11.1 of this specification), the OITF SHOULD ask the user
for confirmation before installing the Widget. The OITF SHOULD provide information
about the conflict (e.g. the version numbers, if available) to allow the user to decide
whether to proceed with the installation or to cancel it.

If the user confirms the installation, then the new Widget SHALL replace the one
already installed; any storage area associated with the replaced Widget SHALL be
retained. Note that the user can also choose to downgrade a Widget, i.e. install an old
version of the Widget to replace the installed, more recent, one.

Arguments uri The resource locator in form of a URI, which points to a Widget package
to be installed.

void uninstalIWidget(WidgetDescriptor wd)

Description Uninstalls a Widget. If this Widget is running it will be stopped. Any storage areas
associated with the uninstalled Widget SHALL be deleted.

Arguments wd A WidgetDescriptor object for a Widget installed on the OITF.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 67 (415)

7.2.1.4 Events

For the intrinsic events listed in the table below a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onLowMemory LowMemory Bubbles: No
Cancellable: No

Context Info: None

onApplicationLoaded ApplicationLoaded Bubbles: No
Cancellable: No

Context Info: appl

onApplicationUnloaded ApplicationUnloaded Bubbles: No
Cancellable: No

Context Info: appl

onApplicationLoadError ApplicationLoadError Bubbles: No
Cancellable: No

Context Info: appl

onWidgetlnstal lation Widgetinstal lation Bubbles: No
Cancellable: No

Context: wd, state, reason

onWidgetUninstallation WidgetUninstallation Bubbles: No

Cancellable: No

Context: wd, state

NOTE: the above DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving the events listed above during the bubbling or the capturing phase. Applications that
use DOM event handlers SHALL call the addEventListener () method on the
application/oipfApplicationManager object. The third parameter of addEventListener, i.e.
“useCapture”, will be ignored.

7.2.2 The Application class
The Application class is used to implement the characteristics of a DAE application.

If the document of an application is modified (or even replaced entirely), the Application object SHALL be retained.
This means that the permission set granted when the application is created applies to all “edits” of the document or other
pages in the application, until the application is destroyed.

7.2.2.1 Properties

readonly Boolean visible

true if the application is visible, false otherwise. The value of this property is not affected by the
application's Z-index or position relative to other applications. Only calls to the show() and hide()
methods will affect its value.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 68 (415)

readonly Boolean active

true if the application is in the list of currently active applications, false otherwise (as defined in section
4.3.8).

readonly StringCollection permissions

StringCol lection object containing the names of the permissions granted to this application.

readonly Boolean isPrimaryReceiver

true if the application receives cross application events before any other application, false otherwise.

readonly Window window

A strict subset of the DOM Window object representing the application. No symbols from the Window object
are accessible through this property except the following:

» void postMessage(any message, String targetOrigin)

readonly ApplicationPrivateData privateData

Access the current application’s private data object.

If an application attempts to access the privateData property of an Application object for a different
application, the OITF SHALL throw an error as defined in section 10.1.1.

function onApplicationActivated
function onApplicationDeactivated
function onApplicationShown

function onApplicationHidden

function onApplicationPrimaryReceiver
function onApplicationNotPrimaryReceilver
function onApplicationTopmost

function onApplicationNotTopmost
function onApplicationDestroyRequest
function onApplicationHibernateRequest
function onKeyPress

function onKeyUp

function onKeyDown

Each of these event handlers represents a DOM 0 event handler that corresponds to one of the events
listed in sections 4.4.7 and 7.2.6.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 69 (415)

7.2.2.2 Methods

void show()

Description

If the application visualization mode as defined by method
getApplicationVisualizationMode() in section 7.2.1.3, is:

1 : Make the application visible.

2 : Make the application visible. Calling this method from the application itself may have
no effect.

3 : Request to make the application visible.

This method only affects the visibility of an application. In the case where more than one
application is visible, calls to this method will not affect the z-index of the application with
respect to any other visible applications.

void hide()

Description

If the application visualization mode as defined by method
getApplicationVisualizationMode() in section 7.2.1.3, is:

1 : Make the application invisible.

2 : Make the application invisible. Calling this method from the application itself may have
no effect.

3 : Request to make the application invisible.
Calling this method has no effect on the lifecycle of the application.

Note: Broadcast independent applications should not call this method. Doing so may
result in only the background being visible to the user

void activatelnput(Boolean gainFocus)

Description

Move the application to the front of the active applications list. If the application has been
hidden using Application.hide(), this method does not cause the application to be
shown.

If the application visualization mode as defined by method
getApplicationVisualizationMode() in section 7.2.1.3, is:

1: The application’s Window object SHALL be moved to the top of the stack of visible
applications. In addition, the application’s Window object SHALL gain input focus if
argument gainFocus has value true.

2 : The application’s Window object SHALL be moved to the top of the stack of visible
applications. In addition, the application’s Window object SHALL gain input focus if
argument gainFocus has value true. Calling this method from the application itself
MAY have no effect.

3 : Request to make the application’s Window object visible. Once visible, the application
SHALL be given input focus, irrespective of the value for argument gainFocus.

void deactivatelnput()

Description

Remove the application from the active applications list. This has no effect on the
lifecycle of the application and MAY have no effect on the resources it uses. Applications
which are not active will receive no cross-application events, unless their Application

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 70 (415)

object is the target of the event (as for the events defined in section 7.2.6). Applications
may still be manipulated via their Application object or their DOM tree.

Application createApplication(String uri, Boolean createChild)

Description

Create a new application and add it to the application tree. Calling this method does not
automatically show the newly-created application.

This call is asynchronous and may return before the new application is fully loaded. An
ApplicationLoaded event will be targeted at the Application object when the new
application has fully loaded.

If the application cannot be created, this method SHALL return null.

Arguments

uri The URI of the first page of the application to be created or the
localURI of a Widget as defined in section 7.2.8.1.1.

createChild Flag indicating whether the new application is a child of the current
application. A value of true indicates that the new application
should be a child of the current application; a value of false
indicates that it should be a sibling.

void destroyApplication()

Description

Terminate the application, detach it from the application tree, and make any resources
used available to other applications. When an application is terminated, any child
applications shall also be terminated.

Application startWidget(WidgetDescriptor wd, Boolean createChild)

Description

Starts a Widget installed on the OITF. The behaviour of this method is equivalent to that
of Application.createApplication().

The Widget is identified by its WidgetDescriptor. To get a list of the
WidgetDescriptor objects for the installed Widgets one can check
ApplicationManager.widgets property. If the Widget is already running or fails to start
this call will return nul 1.

Arguments

wd a WidgetDescriptor object for a Widget installed on the OITF.

createChild Flag indicating whether the new application is a child of the current
application. A value of true indicates that the new application should
be a child of the current application; a value of false indicates that it
should be a sibling.

void stopWidget(WidgetDescriptor wd)

Description

Terminate a running Widget. The behaviour of this method is equivalent to that of
Application.destroyApplication().

Calling this method will detach the Widget from the application tree, and make any
resources used available to other applications. When a Widget is terminated, any child
applications shall also be terminated.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 71 (415)

Arguments

wd A WidgetDescriptor object for a Widget installed on the OITF.

7.2.3 The ApplicationCollection class

typedef Collection<Application> ApplicationCollection

The ApplicationCol lection class represents a collection of Application objects. See Annex K for the
definition of the collection template.

7.2.4
7.24.1

The ApplicationPrivateData class

Properties

readonly Keyset keyset

The object representing the user input events sent to the DAE application.

readonly Channel currentChannel

For a broadcast-related application, the value of the property contains the channel whose AIT is currently
controlling the lifecycle of this application. If no channel is being presented, or if the application is not
broadcast-related, the value of this property shall be null.

readonly Boolean wakeupApplication

The wakeupApplication property is set if there has been a prepareWakeupApplication() request by

that application.

readonly Boolean wakeupOITF

The wakeupOITF property is set if there has been a call to the prepareWakeupOI1TF() method.

7.24.2

Methods

Integer getFreeMem()

Description

Let application developer query information about the current memory available to the
application. This is used to help during application development to find application memory
leaks and possibly allow an application to make decisions related to its caching strategy
(e.g. for images).

Returns the available memory to the application or -1 if the information is not available.
For example:

var app = appman.getOwnerApplication(window.document);

debug("'[APP] free mem = " + app.privateData.getFreeMem() + "\n"");

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 72 (415)

Boolean prepareWakeupApplication(String URI, String token, Date time)

Description The prepareWakeupApplication() method allows the DAE application to set-up the
OITF to wake-up at a specified time. The wake-up is limited to the OITF being in the
PASSIVE_STANDBY state at the specified time. If the timer expires while the DAE
application is in a different state it is silently ignored.

Only one wake-up is to be supported for a DAE application. If a previous wake-up request
had been registered it SHALL be overwritten.

If the wake-up fails to be set-up this operation SHALL return false. Failure may be due to
OITF expecting to change to an OFF power state which would not allow the wake-up
request to survive.

Arguments URI The URI from which the content can be fetched.
token The token is a string which the application may retrieve with
clearWakeupToken().
time The time when the wake-up is to occur.

Boolean prepareWakeupOITF(Date time)

Description The prepareWakeupOlTF() method allows the DAE application to set-up the OITF to
wake-up at a specified time. The wake-up is limited to the OITF being in the
PASSIVE_STANDBY or PASS1VE_STANDBY_HIBERNATE state at the specified time. If the
timer expires while the DAE application is in a different state it is silently ignored.

Unlike prepareWakeupApplication() this method applies to all the DAE applications
and not limited to a single DAE application

If the wake-up falils to be set-up this operation SHALL return false. Failure may be due to
OITF expecting to change to an OFF power state which would not allow the wake-up
request to survive.

Arguments time The time when the wake-up is to occur.

String clearWakeupToken()

Description The clearWakeupToken() method shall return the token set in
prepareWakeupApplication() method. The wake-up token should be cleared once it
is read in order to limit usage to only when the DAE application starts up.

7.2.5 The Keyset class

The Keyset object permits applications to define which key events they request to receive. There are two means of
defining this. Common key events are represented by constants defined in this class which are combined in a bit-wise
mask to identify a set of key events. Less common key events are not included in one of the defined constants and form
part of an array.

The supported key events indicated through the capability mechanism in section 9.3 SHALL be the same as the
maximum set of key events available to the browser as indicated through this object

The default set of key events available to broadcast-related applications shall be none. The default set of key events
available to broadcast-independent or service provider related applications which do not call Keyset.setValue()
SHALL be all those indicated by the constants in this class which are supported by the OITF excluding those indicated
by OTHER.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 73 (415)

7.25.1 Constants
Constant Numeric Value Use
name
RED 0x1 Used to identify the VK_RED key event.
GREEN 0x2 Used to identify the VK_GREEN key event.
YELLOW Ox4 Used to identify the VK_YELLOW key event.
BLUE 0x8 Used to identify the VK_BLUE key event.
NAVIGATION 0x10 Used to identify the VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT, VK_ENTER
and VK_BACK key events.
VCR 0x20 Used to identify the VK_PLAY, VK_PAUSE, VK_STOP, VK_NEXT, VK_PREV,
VK_FAST_FWD, VK_REWIND, VK_PLAY_PAUSE key events.
SCROLL 0x40 Used to identify the VK_PAGE_UP and VK_PAGE_DOWN key events.
INFO 0x80 Used to identify the VK_INFO key event.
NUMERIC 0x100 Used to identify the number events, 0 to 9.
ALPHA 0x200 Used to identify all alphabetic events.
OTHER 0x400 Used to indicate key events not included in one of the other constants in
this class.
7.2.5.2 Properties

readonly Integer value

The value of the keyset which this DAE application will receive.

readonly Integer otherKeys[]

If the OTHER bit in the value property is set then this indicates those key events which are available to
the browser which are not included in one of the constants defined in this class, If the OTHER bit in the
value property is not set then this property is meaningless.

readonly Integer maximumValue

In combination with maximumOtherKeys, this indicates the maximum set of key events which are available
to the browser. When a bit in this maximumValue has value 0, the corresponding key events are never
available to the browser.

readonly Integer maximumOtherKeys[]

If the OTHER bit in the maximumValue property is set then, in combination with maximumValue, this

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 74 (415)

indicates the maximum set of key events which are available to the browser. For key events which are not
included in one of the constants defined in this class, if they are not listed in this array then they are never
available to the browser. If the OTHER bit in the value property is not set then this property is meaningless.

Boolean supportsPointer

Applications that have been designed to handle Mouse Events can express it by using this property.

Applications SHALL set this property to true to indicate that they support a pointer based interaction
model, i.e. that they listen to and handle Mouse Events as included in the Web Standards TV profile
[OIPF_DAE2_WEB]. They SHALL set it to false otherwise. If not set, an OITF SHALL assume that the
application does not support a pointer based interaction model.

Based on the value of this property, an OITF MAY decide to enable or disable the rendering of a free
moving cursor.

Note: OITFs are not required to support a pointer based input device even though they are recommended
to do so. If pointer based input devices are supported, this is expressed via the +POINTER Ul Profile
fragment as described in section 9.2.

7.25.3 Methods

Integer setValue(Integer value, Integer otherKeys[])

Description Sets the value of the keyset which this DAE application requests to receive. Where more
than one DAE application is running, the events delivered to the browser SHALL be the
union of the events requested by all running DAE applications. Under these
circumstances, applications may receive events which they have not requested to
receive.

The return value indicates which keys will be delivered to this DAE application encoded
as bit-wise mask of the constants defined in this class.

Arguments value The value is a number which is a bit-wise mask of the constants defined
in this class. For example;

myKeyset = myApplication.privateData.keyset;

myKeyset.setValue(0x00000013);
myKeyset.setValue(myKeyset.INFO | myKeyset.NUMERIC);

otherkeys This parameter is optional. If the value parameter has the OTHER bit set
then it is used to indicate the key events that the application wishes to
receive which are not represented by constants defined in this class.

String getKeylcon(Integer code)

Description Return the URI of the icon representing the physical key or other mechanism that is used
by the terminal to generate the key event for the given keycode passed. It SHALL return
null if the key has no icon associated with it.

Arguments code The VK_ constant for the key whose icon should be returned.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 75 (415)

String getKeyLabel (Integer code)

Description Return the textual label representing the physical key or other mechanism that is used by

the terminal to generate the key event for the given keycode passed. It SHALL return
null if the key has no textual label associated with it.

Arguments code The VK_ constant for the key whose textual label should be returned.

7.2.6 New DOM events for application support

New events have been created that are raised on the Application objects in the application tree. These are normal
events, not cross-application events, and are used to indicate changes in the state of an application.

Event

Description

ApplicationActivated

Issued when an application focus change occurs to inform the
recipient of the event that the application is now focussed.

ApplicationDeactivated

Issued when an application focus change occurs to inform the
recipient of the event that the application is now no longer focussed.

ApplicationShown

Issued when an application has become visible.

ApplicationHidden

Issued when an application has become hidden.

ApplicationPrimaryReceiver

This event is issued to indicate that the target is now at the front of
the active application list.

ApplicationNotPrimaryReceiver

This event is issued to indicate that the target is no longer at the
front of the active application list.

ApplicationTopmost

This event is issued to indicate that the target is now the topmost
(i.e. it has the highest Z-index and is not obscured by any other
visible applications, for OITFs where multiple applications are
visible simultaneously.

ApplicationNotTopmost

This event is issued to indicate that the target is no longer at the
topmost application. For OITFs where only one application is visible
at a time, this event indicates that the application is no longer visible
to the user.

ApplicationDestroyRequest

This event is issued to indicate that the target application is about to
be terminated. It is not issued when an application calls
destroyApplication() method for itself (i.e. to exit itself).

Non-responsive applications SHOULD be forcibly terminated by the
OITF, including the case where listeners for
ApplicationDestroyRequest events do not return promptly. The
determination of when an application is "non-responsive" is
terminal-specific.

If an application does not register a listener for this event and there
is a need for the system to terminate the application, then the
application SHALL be terminated immediately.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 76 (415)

Event Description

ApplicationHibernateRequest This event is issued to indicate that the OITF is about to enter a
hibernate mode.

The OITF SHALL start a short watchdog timer (e.g. 2 seconds).
During this period the application may take any actions (for example
to store the currently viewed channel in case of an unsuccessful
start-up).

Table 6: New DOM events for application support

These events do not bubble and cannot be cancelled. Each of these events has a corresponding DOM 0 event handler
property on the Application object.

7.2.7 Examples (informative)

The examples below illustrate some aspects of the application model.

7.2.7.1 Locating the Application object

The ApplicationManager class provides the getOwnerApplication() method, which returns the document's
owning application node:

// Assumes that the application/oipfApplicationManager object has the ID

// “applicationmanager”

Var appMgr = document.getElementByld("'applicationmanager');
var self = appMgr.getOwnerApplication(Window.document);

All other application functionality is available from this object.

7.2.7.2 Creating a new application

Creating a new application is a simple matter of creating a new Application object.

// Assumes that the application/oipfApplicationManager object has the ID

// “applicationmanager”

var appMgr = document.getElementByld(*'applicationmanager');

var self = appMgr.getOwnerApplication(Window.document);

var child = self.createApplication(url_of_application, true);
A typical requirement on an application is to only become visible once it has fully loaded. To do this, it can take
advantage of load events. Here is an example from a clock application, which wants to load an image to become the
background of the clock, upon which it can write the text of the clock.

<script>
function loaded() {

var screen = document.defaultView.screen;
var clock = document.getElementByld("clock"®);

setup_clock(clock.width, clock.height);
// Assumes that the application/oipfApplicationManager object has the ID
// “applicationmanager”
var appMgr = document.getElementByld("applicationmanager');
var self = appMgr.getOwnerApplication(Window.document);
self.show();
</script>
<style> * { margin: Ocm } </style>
<body onload=""loaded()"">
<img id="clock™ src="clockbackground.png"” style="position: absolute;

top: Opx; left=0px">
</body>

7.2.8 Widget APlIs

This section defines APIs an author can use to interact with Widgets installed on the OITF. Note that the Widget lifecycle
is managed through the application manager as defined in the previous sections.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 77 (415)

7.2.8.1 The WidgetDescriptor class

The WidgetDescriptor class is used to implement the characteristics of a DAE Widget. It extends the Widget
interface defined in section 11.3 of this specification with the properties below.

7.28.1.1 Properties

readonly String localURI

The URI of the installed Widget. It can be used as an argument to
ApplicationManager.createApplication() to run the Widget. The value of this property SHOULD
NOT represent the actual location of the Widget on the OITF’s local storage.

readonly String downloadURI

The URI of the location from where the Widget package was downloaded. This property SHALL match the
URI used as argument of createApplication() or instal IWidget() when installing the Widget.

readonly StringCollection defaultlcon

A collection of URI strings for all the available default icons. Default icons are defined in [Widgets-
Packaging]. This collection only contains URIs for the icons currently available in the Widget package.

readonly StringCollection customlcons

A collection of URI strings for all the custom icons of the current Widget. Custom icons are defined in
[Widgets-Packaging].

readonly Boolean running

This flag indicates the running state of the Widget.

7.2.8.1.2 Clarifications

The WidgetDescriptor class is used to identify an installed Widget regardless of whether it is running or not, and so
some clarification on the attribute values defined for the Widget interfaces [Widgets-APIs] is needed. The attributes
height and width are defined in [Widgets-APIs] on the "Widget instance’s viewport". When the Widget is not running
those attributes SHALL take the value defined in the Widget Manifest (if any) otherwise they SHALL be null. When the
Widget is running these attributes SHALL adhere to what is defined in [Widgets-APIs].

7.2.8.2 The WidgetDescriptorCollection class
typedef Collection<WidgetDescriptor> WidgetDescriptorCollection

The WidgetDescriptorCol lection class represents a collection of WidgetDescriptor objects. See Annex K
for the definition of the collection template.

7.3 Configuration and setting APIs

This section defines the interface to configuration and user settings information. Hardware configuration of the OITF is
managed via an instance of the Local System object. This provides access to hardware information and provides an

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 78 (415)

entry point to configure the outputs and network interfaces of the OITF. Settings relating to the user interface and
behaviour of the platform software are managed via an instance of the Configuration object.

This section is subject to security control, (see section 10.1.3.7) and only applies if <configurationChanges> has
value true.

7.3.1 The application/oipfConfiguration embedded object

The OITF SHALL implement the “application/oipfConfiguration” object as defined below. This object
provides an interface to the configuration and user settings facilities within the OITF.

7.3.1.1 Properties

readonly Configuration configuration

Accesses the configuration object that sets defaults and shows system settings.

readonly LocalSystem localSystem

Accesses the object representing the platform hardware.

function onlpAddressChange(Networklnterface item, String ipAddress)

The function that is called when the IP address of a network interface has changed. The specified function
is called with two arguments item and ipAddress. The ipAddress may have the value undefined if a
previously assigned address has been lost.

7.3.1.2 Events

For the intrinsic event “onlpAddressChange”, a corresponding DOM event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onlpAddressChange IpAddressChange Bubbles: No
Cancellable: No

Context Info: item, ipAddress

NOTE: the above DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving an 1pAddressChange event during the bubbling or the capturing phase. Applications
that use DOM event handlers SHALL call the addEventListener () method on the
application/oipfConfiguration object. The third parameter of addEventListener, i.e. “useCapture”,
will be ignored.

7.3.2 The Configuration class

The Configuration object allows configuration items within the system to be read and modified. This includes
settings such as audio and subtitle languages, display aspect ratios and other similar settings. Unlike the LocalSystem
object, this is concerned with software- and application-related settings rather than hardware configuration and control.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 79 (415)

7.3.2.1 Properties

String preferredAudiolLanguage

A comma-separated set of languages to be used for audio playback, in order of preference.
Each language SHALL be indicated by its ISO 639-2 language code as defined in [ISO 639-2].

String preferredSubtitleLanguage

A comma-separated set of languages to be used for subtitle playback, in order of preference. The subtitle
component (see section 7.16.5.5) that matches the highest ordered language SHALL be activated
(equivelant to the selectComponent method) and all other subtitle components SHALL be deactivated
(equivelant to the unselectComponent method).

Each language SHALL be indicated by its ISO 639-2 language code as defined in [ISO 639-2] or as a
wildcard specifier "***",

If the wildcard is included it SHALL be the last item in the set. If no subtitle component in the content
matches a language in this property and the wildcard is included then the first (lowest) subtitle component
SHALL be selected.

String preferredUlLanguage

A comma-separated set of languages to be used for the user interface of a service, in order of preference.
Each language SHALL be indicated by its ISO 639-2 language code as defined in [ISO 639-2].

If present, the HTTP Accept-language header shall contain the same languages as the
preferredUILanguage property with the same order of preference. NOTE: The order of preference in the
Accept-language header is indicated using the quality factor.

String countryld

An ISO-3166 three character country code identifying the country in which the receiver is deployed.

Integer regionld

An integer indicating the time zone within a country in which the receiver is deployed. A value of 0 SHALL
represent the eastern-most time zone in the country, a value of 1 SHALL represent the next time zone to
the west, and so on.

Valid values are in the range 0 — 60.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 80 (415)

Integer pvrPolicy

The policy dictates what mechanism the system should use when storage space is exceeded.

Valid values are shown in the table below.

Value Description

0 Indicates a recording management policy where no recordings are
to be deleted.

1 Indicates a recording management policy where only watched
recordings MAY be deleted.

2 Indicates a recording management policy where only recordings
older than the specified threshold (given by the pvrSaveDays and
pvrSaveEpisodes properties) MAY be deleted.

Integer pvrSaveEpisodes

When the pvrPolicy property is set to the value 2, this property indicates the minimum number of
episodes that SHALL be saved for series-link recordings.

Integer pvrSaveDays

When the pvrPolicy property is set to the value 2, this property indicates the minimum save time (in
days) for individual recordings. Only recordings older than the save time MAY be deleted.

Integer pvrStartPadding

The default padding (measured in seconds) to be added at the start of a recording.

Integer pvrEndPadding

The default padding (measured in seconds) to be added at the end of a recording.

Integer preferredTimeShiftMode

The time shift mode indicates the preferred mode of operation for support of timeshift playback in the
video/broadcast object. Valid values are defined in the timeShiftMode property in section 7.13.2.2. The
default value is 0, timeshift is turned off.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 81 (415)

7.3.2.2 Methods

String getText(String key)

Description Get the system text string that has been set for the specified key.

Arguments key A key identifying the system text string to be retrieved.

void setText(String key, String value)

Description Set the system text string that has been set for the specified key. System text strings are
used for automatically-generated messages in certain cases, e.g. parental control
messages.

Arguments key The key for the text string to be set. Valid keys are:

Key Description
no_title Text string used as the title for

programmes and channels where no
guide information is available.

Defaults to “No information”

no_synopsis Text string used as the synopsis for
programmes where no guide
information is available.

Defaults to “No further information
available”

manual_recording Text string used to identify a manual
recording.

Defaults to “Manual Recording”

value The new value for the system text string.

7.3.3 The LocalSystem class
The Local System object allows hardware settings related to the local device to be read and modified.

Note: The standbyState property has been removed from this class.

7.3.3.1 Constants
The following values are defined for the standby state of the OITF:

Name Value Use

OFF 0 The OITF is in the off state and no power is consumed.
This is the case of a power outage or if the OITF has the
ability to be completely turned off. Scheduled recording is
not expected to work.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 82 (415)

Name Value

Use

ON 1

The OITF is in normal working mode with user
interaction. The DAE applications may render any
presentation graphically.

PASSIVE_STANDBY 2

The OITF is in the lowest possible power consumption
state (meeting regulations and certifications). The OITF
may support wake-up from a passive standby in order, for
example, to perform a scheduled recording.

ACTIVE_STANDBY 3

The OITF is in an intermediate power consumption state.
The output to the display shall be inactive. In this state
DAE applications may continue to operate.

PASSIVE_STANDBY_HIBERNATE 4

The OITF is in the lowest possible power consumption
state (meeting regulations and certifications). If the
platform supports hibernate mode then the OITF stores
all applications in volatile memory to allow for quick
startup.

RESTART 5

The OITF shall restart and return to a ON state.

FACTORY_RESET 6

Restart the OITF and reset all settings and data to an
initial/factory state. The exact settings and data to be
reset are implementation dependant. The use of the this
operation with the setPowerState method is subject to
security control defined in section 10.1.3.8

The following values are defined for the startup URL of the OITF:

Name Value Use

STARTUP_URL_NONE 0 No startup URL is known.

STARTUP_URL_DHCP 1 The startup URL is derived from DHCP procedures.

STARTUP_URL_TR069 2 The startup URL is derived through TR-069 procedures.

STARTUP_URL_PRECONFIGURED 3 The startup URL is that which is configured through the
OITF firmware.

STARTUP_URL_OTHER 9 The startup URL is obtained through other (perhaps non-
standardized) procedures.

7.3.3.2 Properties

readonly String devicelD

Private OITF Identifier. This property SHALL take the value undefined except when accessed by
applications meeting either of the following criteria:

e The application is signalled in an SD&S service provider discovery record with an application
usage of urn:oipf:cs:ApplicationUsageCS:2009:hni-igi where the SD&S service provider
discovery record was obtained by the OITF through the procedure defined in section 5.4.1.2 of

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 83 (415)

[OIPF_PROT2].

e The URL of the application was discovered directly through the procedure defined in section
5.4.1.2 of [OIPF_PROT2].

In these two cases, it SHALL take the same value as defined for the DHCP client identifier in DHCP option
61 in section 12.1.1.1 of [OIPF_PROT2].

readonly Boolean systemReady

Indicates whether the system has finished initialising. A value of true indicates that the system is ready.

readonly String vendorName

String identifying the vendor name of the device.

readonly String modelName

String identifying the model name of the device.

readonly String familyName

String identifying the name of the family that the device belongs to. Devices in a family differ only by details
that do not impact the behaviour of the OITF aspect of the device, e.g. screen size, remote control, number
of HDMI ports, size of hard disc. Family names are allocated by the vendor and the combination of
vendorName and fami lyName should uniquely identify a family of devices. Different vendors may use the
same fami lyName, although they are recommended to use conventions that avoid this.

readonly String softwareVersion

String identifying the version number of the platform firmware.

readonly String hardwareVersion

String identifying the version number of the platform hardware.

readonly String serialNumber

String containing the serial number of the platform hardware.

readonly Integer releaseVersion

Release version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “1.0”, this property should be set to 2.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 84 (415)

readonly Integer majorVersion

Major version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “2.0", this property should be set to 2.

readonly Integer minorVersion

Minor version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “2.0", this property should be set to 0.

readonly String oipfProfile

Profile of the OIPF specification implemented by the OITF. Values of this field are not defined in this
specification.

readonly Boolean pvrEnabled

Flag indicating whether the platform has PVR capability (local PVR).

Note: This property is deprecated in favour of the pvrSupport property.

readonly Boolean ciplusEnabled

Flag indicating whether the platform has Cl+ capability.

readonly Integer powerState

The powerState property provides the DAE application the ability to determine the current state of the
OITF. The property is limited to the ACTIVE_STANDBY or ON states.

readonly Integer previousPowerState

The previousPowerState property provides the DAE application the ability to retrieve the previous state.

readonly Integer timeCurrentPowerState

The time that the OITF entered the current power state. The time is represented in seconds since midnight
(GMT) on 1/1/1970.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 85 (415)

function onPowerStateChange(Integer powerState)

The function that is called when the power state has changed. The specified function is called with the
argument powerState:

e Integer powerState —the new power state.

Integer volume

Get or set the overall system volume. Valid values for this property are in the range 0 - 100. The OITF
SHALL store this setting persistently.

Boolean mute

Get or set the mute status of the default audio output(s). A value of true indicates that the default
output(s) are currently muted.

readonly AVOutputCollection outputs

A collection of AVOutput objects representing the audio and video outputs of the platform. Applications
MAY use these objects to configure and control the available outputs.

readonly NetworklnterfaceCollection networklnterfaces

A collection of NetworkInterface objects representing the available network interfaces.

readonly TunerCollection tuners

A collection of Tuner objects representing the physical tuners available in the OITF.

readonly Integer tvStandardsSupported

Get the TV standard(s) which are supported on the analogue video outputs.

This property can take one or more of the following values:

Value Description
1 Indicates platform support for the NTSC TV standard.
2 Indicates platform support for the PAL-BGH TV standard.
4 Indicates platform support for the SECAM TV standard.
8 Indicates platform support for the PAL-M TV standard.
16 Indicates platform support for the PAL-N TV standard.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 86 (415)

Values are stored as a bitfield.

readonly Integer tvStandard

Get the TV standard for which the analogue video outputs are currently configured.

This property can take one or more of the following values:

Value Description
0 Indicates there are no analogue video outputs
1 Indicates platform support for the NTSC TV standard.
2 Indicates platform support for the PAL-BGH TV standard.
4 Indicates platform support for the SECAM TV standard.
8 Indicates platform support for the PAL-M TV standard.
16 Indicates platform support for the PAL-N TV standard.

readonly Integer pvrSupport

Flag indicating the type of PVR support used by the application. This property may take zero or more of the
following values:

Value Description

0 PVR functionality is not supported. This is the default value if
<recording> as specified in section 9.3.3 has value false.

1 PVR functionality is supported in the OITF. This is the default
value if <recording> as specified in section 9.3.3 has value
true.

Values are stored as a bitfield.

readonly Startuplnformation startuplnformation

Indicates any information used at startup time of the OITF.

function onStartuplnfoChange(Startuplnformation startuplnfo)

The function that is called when any property in the startup information is changed.
The specified function is called with the argument startupInfo:

e StartupInformation startuplnfo —the new startup information.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 87 (415)

7.3.3.3

Methods

Boolean setScreenSize(Integer width,

Integer height)

Description | Set the resolution of the graphics plane. If the specified resolution is not supported by the
OITF, this method SHALL return false. Otherwise, this method SHALL return true.
Arguments width The width of the display, in pixels.
height The height of the display, in pixels.

Boolean setTvStandard(Integer tvStandard)

Description | Set the TV standard to be used on the analogue video outputs. Returns false if the
requested mode cannot be set.
Arguments tvStandard | The TV standard to be set. Valid values are defined in the description of the

tvStandard property in section 7.3.3.2.

Integer setPvrSupport(Integer state)

Description Set the type of PVR support used by the application. The types of PVR supported by the
receiver MAY not be supported by the application; in this case, the return value indicates
the pvr support that has been set.

Arguments State The type of PVR support desired by the application. More than one type of PVR

functionality MAY be specified, allowing the receiver to automatically select the
appropriate mechanism. Valid values are:

Value Description
0 PVR functionality is not supported. This is the default value
if <recording> as specified in section 9.3.3 has value
false.
1 PVR functionality is supported in the OITF. This is the
default value if <recording> as specified in section 9.3.3
has value true.

Values are stored as a bitfield.

Boolean setPowerState(Integer type)

Description The setPowerState() method allows the DAE application to modify the OITF state.
The power state change may be restricted for some values of type, for example OFF,
PASSIVE_STANDBY, RESTART and FACTORY_RESET. A call to setPowerState() with a
restricted value of type SHALL return false.

Arguments type The type values that may be specified are defined in section 7.3.3.1

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 88 (415)

Boolean setDigestCredentials(String protocol, String domain, String username,
String password)

Description

Set the credentials for the specified protocol to use for digest authentication negotiation for
all subsequent requests to the specified domain. The credentials are persistently stored
overwriting any previous set credentials. If domain is null the provided credentials SHALL
apply for all domains. Returns true if credentials are successfully set, false otherwise.

If digest authentication is not supported for the specified protocol then return false. The
valid values are the strings “http” and “https”.

Setting of Digest Credentials on the same protocol and domain SHALL update the
username and password.

If the credentials, when used, are incorrect then the behaviour SHALL be the same as any
other time that stored credentials are incorrect, e.g. saved values from a user prompt.

The credentials SHALL be used (if necessary) in all requests made by DAE applications.
The credentials MAY be used in requests made by other components such as media
players, DLNA clients, etc.

Arguments

protocol The protocol to apply the credentials.

domain The domain to which the credentials apply.

username The username to be used in the digest authentication.

password The password to be used in the digest authentication.

Boolean clearDigestCredentials(String protocol, String domain)

Description Clear any previously set digest credentials for the specified domain. If domain is null all
set credentials are cleared.
Returns true if the digest credentials for the given protocol and domain were cleared or
do not exist, or false if credentials failed to be cleared.

Arguments protocol The protocol to apply the credentials. The value should be the same as one

of those specified for the setDigestCredentials() method.

domain The domain to which the credentials apply.

Boolean hasDigestCredentials(String protocol, String domain)

Description Check if digest credentials are currently defined for the specified protocol and domain.
Returns true if credentials have been set by a previous call to
setDigestCredentials(), otherwise returns false.

Arguments protocol The protocol to apply the credentials. The value should be the same as one

of those specified for the setDigestCredentials() method.

domain The domain to which the credentials apply.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 89 (415)

7.3.3.4 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onPowerStateChange PowerStateChange Bubbles: No
Cancellable: No

Context Info: powerState

onStartuplnfoChange StartuplInfoChange Bubbles: No
Cancellable: No

Context Info: startuplinfo

NOTE: the above DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving the events listed above during the bubbling or the capturing phase. Applications that
use DOM event handlers SHALL call the addEventListener () method on the LocalSystem object.

7.3.4 The NetworklInterface class
The NetworkInterface class represents a physical or logical network interface in the receiver.

7.3.4.1 Properties

readonly String ipAddress

The IP address of the network interface, in dotted-quad notation for IPv4 or colon-hexadecimal notation for
IPv6. This property SHALL take the value undefined if no IP address has been assigned. The IP address
may be link local, private or global, depending on which address block it belongs to, as reserved by IANA.

readonly String macAddress

The colon-separated MAC address of the network interface.

readonly Boolean connected

Flag indicating whether the network interface is currently connected.

Boolean enabled

Flag indicating whether the network interface is enabled. Setting this property SHALL enable or disable
the network interface.

7.3.5 The AVOutput class

The AVOutput class represents an audio or video output on the local platform.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 90 (415)

7.3.5.1 Properties

readonly String name

The name of the output. Each output SHALL have a name that is unique on the local system. At least one
of the outputs SHALL have the name "al 1" and SHALL represent all available outputs on the platform. The
results of reading properties from the "al 1" AVOutput are implementation specific.

readonly String type

The type of the output. Valid values are “audio”, “video”, or “both”.

Boolean enabled

Flag indicating whether the output is enabled. Setting this property SHALL enable or disable the output.

Boolean subtitleEnabled

Flag indicating whether the subtitles are enabled. The language of the displayed subtitles is determined by
a combination of the value of the Configuration.preferredSubtitleLanguage property (see section
7.3.2) and the subtitles available in the stream. For audio outputs, setting this property will have no effect.

String videoMode

Read or set the video format conversion mode, for which hardware support MAY be available on the
device. Valid values are:

normal
stretch
zoom

The following table provides guidance as to the relationship between videoMode, aspectRatio (output)
and the aspectRatio (input) of the AVVideoComponent class.

aspectRatio videoMode value

(input/output) value

Normal Stretch Zoom

16:9 input / 4:3 output

Black bars at top and
bottom, all video visible

No black bars, picture
stretched vertically

No black bars, picture
clipped on left and right sides

4:3 input / 16:9 output

Black bars on left and right,
all video visible

No black bars, picture
stretched horizontally

No black bars, picture
clipped top and bottom

4:3 input / 4:3 output

No change

No change

No change

16:9 input /16:9 output

No change

No change

No change

The DAE application graphical layer is unaffected by the videoMode.

For audio-only outputs, setting this property SHALL have no effect.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 91 (415)

String digitalAudioMode

Read or set the output mode for digital audio outputs for which hardware support MAY be available on the
device. Valid values are shown below.

Value Behaviour

ac3 Output AC-3 audio.

uncompressed Output uncompressed PCM audio.

For video-only outputs, setting this property SHALL have no effect.

String audioRange

Read or set the range for digital audio outputs for which hardware support MAY be available on the device.
Valid values are shown below

Value Behaviour
normal Use the normal audio range.
narrow Use a narrow audio range.
wide Use a wide audio range.

For video-only outputs, setting this property SHALL have no effect.

String hdVideoFormat

Read or set the video format for HD and 3D video outputs for which hardware support MAY be available on
the device. Valid values are:

4801

480p

5761

576p

720i

720p
10801
1080p
720p_TaB
720p_SbS
1080i_SbS
1080p_TaB
1080p_Sbs

For audio-only or standard-definition outputs, setting this property SHALL have no effect.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 92 (415)

String tvAspectRatio

Indicates the output display aspect ratio of the display device connected to this output for which hardware
support MAY be available on the device. Valid values are:

4:3
16:9
For audio-only outputs, setting this property SHALL have no effect.

readonly StringCollection supportedVideoModes

Read the video format conversion modes that may be used when displaying a 4:3 input video on a 16:9
output display or 16:9 input video on a 4:3 output display. The assumption is that the hardware supports
conversion from either format and there is no distinction between the two. See the definition of the
videoMode property for valid values.

For audio outputs, this property will have the value nul I.

readonly StringCollection supportedDigitalAudioModes

Read the supported output modes for digital audio outputs. See the definition of the digitalAudioMode
property for valid values.

For video outputs, this property will have the value nul l.

readonly StringCollection supportedAudioRanges

Read the supported ranges for digital audio outputs. See the definition of the audioRange property for
valid values.

For video outputs, this property will have the value nul I.

readonly StringCollection supportedHdVideoFormats

Read the supported HD and 3D video formats. See the definition of the hdVideoFormat property for valid
values.

For audio outputs, this property will have the value nul I.

readonly StringCollection supportedAspectRatios

Read the supported TV aspect ratios. See the definition of the tvAspectRatio property for valid values.

For audio outputs, this property will have the value nul I.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 93 (415)

readonly Integer current3DMode

Read whether the display is currently in a 2D or 3D mode. Return values are:

Value Description
0 The display is in a 2D video mode
1 The display is in a 3D video mode

function on3DModeChange(Integer action)

This function is the DOM 0 event handler for events relating to actions carried out on an item in a content
catalogue. The specified function is called with the following arguments:

e Integer action - The type of action that the event refers to. Valid values are:

Value Description
0 The display changed from a 3D to a 2D video mode
1 The display changed from a 2D to a 3D video mode

7.3.5.2 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

on3DModeChange 3DModeChange Bubbles: No
Cancellable: No

Context Info: action

NOTE: the above DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD not rely on receiving an 1pAddressChange event during the bubbling or the capturing phase. Applications
that use DOM event handlers SHALL call the addEventListener() method on the
application/oipfConfiguration object. The third parameter of addEventListener, i.e. “useCapture”,
will be ignored.

7.3.6 The NetworklinterfaceCollection class

typedef Collection<Networklnterface> NetworklnterfaceCollection

The NetworkInterfaceCol lection class represents a collection of NetworklInterface objects. See Annex K
for the definition of the collection template.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 94 (415)

7.3.7 The AVOutputCollection class

typedef Collection<AVOutput> AVOutputCollection

The AVOutputCol lection class represents a collection of AVOutput objects. See Annex K for the definition of the
collection template.

7.3.8 The TunerCollection class

typedef Collection<Tuner> TunerCollection

The TunerCol lection class represents a collection of Tuner objects. See Annex K for the definition of the collection
template.

7.3.9 The Tuner class

A Tuner object represents the source of broadcast content provided through a physical tuner in the OITF. Each Tuner
object is represented by a <video_broadcast> element in the capability description as defined in section 9.3.1.

A Tuner object that is capable of tuning at the same time to multiple transponders SHALL have the nrstreams attribute
of the <video_broadcast> element set to a value equal to the number of transponders.

A Tuner object that is capable of tuning to transponders of different types SHALL include all those types in the types
attribute of the <video_broadcast> element.

NOTE: An OITF may contain a physical tuner that has its capabilities split into multiple Tuner objects to fit the
restrictions on the <video_broadcast> element outlined above and in section 9.3.1.

7.3.9.1 Properties

readonly Integer id

A unique identifier of the tuner.

readonly String name

The name of the tuner as designated in OITF.

readonly IntegerCollection idTypes

Returns a collection of the types supported by the tuner. The types are according to the ID types in section
7.13.11.1 under Channel object.

Boolean enableTuner

The property enables (true) and disables (False) the tuner. Reading the property provides the current
state, enabled or disabled. Attempting to disable the tuner while the resource is in use has no effect and the
tuner SHALL continue to be enabled. While disabled:

e any external power feed (if applicable) SHALL be turned off;
e the value of the signal Info property is not defined;

e the value of the InbInfo property is not defined;

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 95 (415)

e the tuner SHALL NOT be available for use by any JavaScript object (e.g. the video/broadcast object)
or by the underlying OITF system (e.g. to perform a scheduled recording). Note the property
enableTuner is available in order to re-enable the tuner and get access to the tuner again.

The set value of the property SHALL persist after OITF restarts.

readonly Signallnfo signallnfo

The property returns a Signal Info object with signal information for example signal strength.

readonly LNBInfo Inblnfo

The property returns a LNBInfo object with information regarding the LNB associated with the tuner.

readonly Integer frontEndPosition

Indicates the physical interface associated with the tuner.

Boolean powerOnExternal

The property turns on (true) and off (false) the power applied to the external interface of the tuner unless the
tuner is disabled. Reading the property provides the current value, on or off. Attempting to modify the
property while the resource is in use has no effect. The value of the property SHALL persist after OITF
restarts.

For DVB-S/S2 power is supplied to the LNB(s) and if present the DISEqC switch.

For DVB-T/T2 a supply +5V is supplied to the antenna with built in amplifier. Note that applying power may
have adverse effects to the external equipment if it has its own power supply. It is a strong recommendation
to indicate to the end user a possible adverse effect before using this method.

For DVB-C/C2 there is no effect.

Reading the property provides the current value.

7.3.10 The Signalinfo class

The Signal Info object provides details on the signal strength of the tuner. If the tuner is not tuned to a transponder the
all properties SHALL have the value undefined.

7.3.10.1 Properties

readonly Number strength

Signal strength measured in dBm, for example -31.5dBm.

readonly Integer quality

Signal quality with range from 0 to 100. Calculation of quality is a function of ber and snr. The specification
remains silent as to how the calculation is made.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 96 (415)

readonly Integer ber

Bit error rate.

readonly Number snr

Signal to noise ratio (dB), for example 22.3dB.

readonly Boolean lock

True if the tuner is locked to a transponder.

7.3.11 The LNBInfo class

The LNBInfo object provides details on the LNB attached to a tuner. Setting any of the properties in this class results in
an immediate update of the LNB configuration that is active for the associated Tuner. The LNB configuration is stored
persistently.

7.3.11.1 Constants

The following constants are define din the LNBInfo class:

Name Value Use

DUAL_LO_FREQ_LNB 30 A universal LNB that has two local oscillator frequency
settings available. The selection between the frequencies is
done by the presence of a 22 kHz control signal.

SINGLE_LO_FREQ_LNB 31 Only a single local oscillator frequency is available in the
LNB.

7.3.11.2 Properties

Integer InbType

The type of LNB connected to the frontend. Valid values are listed in section 7.3.11.1.

Number InbLowFreq

The low or only, if a single local oscillator frequency LNB is used, LNB local oscillator frequency in MHz.

Number InbHighFreq

If a dual local oscillator frequency LNB is used this is the high LNB local oscillator frequency in MHz. If a single
local oscillator frequency LNB is used this argument shall be set to 0.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 97 (415)

Number crossoverFrequency

Indicates the frequency (in MHz) when to switch between the high- and low-band oscillator frequencies
(InbLowFreq and InbHighFreq respectively).

Number InbStartFrequency

Indicates the lowest frequency, in MHz, that the LNB can be used for.

Number InbStopFrequency

Indicates the highest frequency, in MHz, that the LNB can be used for.

Number orbitalPosition

Indicates the orbital position of the satellite in degrees, negative value for west, positive value for east. For
example, Astra 19.2 East would have orbitalPosition 19.2. Thor 0.8 West would have orbitalPosition -0.8.

This property, if provided, will be used to select a Tuner instance (when scanning and tuning). Setting any
value which is not a valid orbital position (an absolute value greater than 180) indicates that the orbital position
need not be considered when using the associated tuner.

7.3.12 The StartupInformation class

This class contains information pertaining to the startup characteristics and configuration of the OITF.

7.3.12.1 Properties

readonly Integer urlSource

The mechanism used to obtain the url property. Any of the STARTUP_URL_* values defined in section 7.3.3.1
are valid.

readonly String url

The URL used at startup of the OITF.
If the urlSource property is STARTUP_URL_NONE then the value of this property SHALL be NULL.

If the urlSource property is STARTUP_URL_PRECONFIGURED then the value of this property SHALL be
undefined.

7.4 Content download APIs

This section defines the content-on-demand download interfaces for both DRM-protected and non-DRM protected
content.

An OITF and a DAE application which have indicated support for downloading content by providing value “true” for
element <download> in their capability profile as specified in section 9.3.4 SHALL adhere to the following
requirements.

NOTE: Annex D clarifies the purpose and the use of these interfaces in more detail.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 98 (415)

7.4.1

The application/oipfDownloadTrigger embedded object

An OITF SHALL support a non-visual embedded object of type application/oipfDownloadTrigger, with the
following JavaScript API to enable passing a content-access descriptor to an underlying download manager using

JavaScript.

The functionality as described in this section is subject to the security model of section 10.

7.4.1.1

Methods

String registerDownload(String contentAccessDownloadDescriptor,
Date downloadStart, Integer priority)

Description

Send contentAccessDownloadDescriptor to the underlying download manager as a
String formatted according to the Content Access Download Descriptor XML Schema as
specified in Annex E.

Returns a String value representing a unique identifier to identify the download, if the
contentAccessDownloadDescriptor is valid and is accepted for triggering a download. If
the OITF supports the application/oipfDownloadManager as specified in section 7.4.3,
this SHALL be the value of the “id” attribute of the associated Download object. Note that if
the Content Access Download Descriptor contains multiple content items to be downloaded,
the associated Download objects for each of these content items SHALL have the same
value for the “id” value. The associated Download objects can be retrieved through the
method getDownloads() as defined in section 7.4.3.3.

The OITF SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the contentAccessDownloadDescriptor is not
accepted for triggering a download.

Arguments

contentAccessDownloadDescriptor String formatted according to the Content Access
Download Descriptor XML Schema as specified in
Annex E.

downloadStart Optional argument indicating the time at which the
download should be started. If the argument is not
included, or takes a value of null then the
download should start as soon as possible.

priority Optional argument indicating the relative priority of
the download with respect to other downloads
registered by the same organisation as the calling
application. Higher values indicate a higher priority.
If the argument is not included then a priority of O
shall be assigned.

String registerDownloadURL(String URL, String contentType, Date downloadStart,

Integer priority)

Description

This method triggers the OITF to initiate a download of the content pointed to by the URL
and the given content type.

The contentType attribute SHALL reflect the expected type of content returned by the
content server when connecting to the URL. The contentType can be used to evaluate if
the content type is part of the list of accepted content types of the OITF. For example, if the
OITF does not support content type “video/MP2T", then the registerDownloadURL
method could return undefined to indicate this to the application in advance of the
download.

If contentType has value “application/vnd.oipf.ContentAccessDownload+xml”, the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 99 (415)

method SHALL return a download identifier, after which the OITF SHALL immediately fetch
the Content Access Download Descriptor, after which the same SHALL happen as if
registerDownload() as defined in section 4.6.3.1 with the given Content Access
Download Descriptor as argument was called. The downloadStart argument only applies to
the individual Download objects described by the Content Access Download Descriptor and
SHALL NOT apply to the retrieval of the Content Access Download Descriptor itself.

Note that if the Content Access Download Descriptor contains multiple content items to be
downloaded, the associated Download objects for each of these content items SHALL have
the same value for the “id” value. The associated Download objects can be retrieved
through method getDownloads() as defined in section 7.4.3.3.

Returns a String value representing a unique identifier to identify the download, if the given
arguments are acceptable by the OITF to trigger a download. If the OITF supports the
application/oipfDownloadManager as specified in section 7.4.3, this SHALL be the
value of the “id” attribute of the associated Download object(s).

The OITF SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the given arguments are not acceptable by the OITF to
trigger a download.

Arguments URL The URL from which the content can be fetched.

contentType The type of content referred to by the URL attribute. The
contentType can be used to evaluate if the content type is part of
the list of supported content types of the OITF.

downloadStart Optional argument indicating the time at which the download
should be started. If the argument is not included, or takes a value
of nul'l then the download should start as soon as possible.

priority Optional argument indicating the relative priority of the download
with respect to other downloads registered by the same
organisation as the calling application. Higher values indicate a
higher priority. If the argument is not included then a priority of O
shall be assigned.

Integer checkDownloadPossible(Integer sizelnBytes)

Description Checks whether a download of a given sizelnBytes would be possible at this moment in
time. The value is application specific. For an application whose organization has a
reservation, only the free space in the reservation SHALL be considered when making the
check.

Possible return values are:

Value Semantics

0 Successful, i.e. the download could be successfully completed if it would be
started at this moment in time.

1 Insufficient Storage, i.e. the download could be started, but is unlikely to
complete successfully, since insufficient storage capacity is available to fully
store the content to be downloaded.

2 Storage not available, i.e. the download would fail, since the storage is
currently unavailable, e.g. in case of removable storage.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 100 (415)

Arguments sizelnBytes Integer value with the given size of the download in bytes.

7.4.2 Extensions to application/oipfDownloadTrigger

If an OITF has indicated support for both BCG metadata (i.e. by giving element <cl ientMetadata> value “true”
and a “type” attribute with value “bcg”), and the download management APIs defined in section 7.4.3 (i.e. by giving
attribute “manageDownloads” of the <download> element a value unequal to “none”) in the client capability
description, then the following additional method SHALL be supported by the
application/oipfDownloadTrigger object defined in section 7.4.1

The functionality as described in this section is subject to the security model of section 10.

String registerDownloadFromCRID(String CRID, String IMI, Date downloadStart,
Integer priority)

Description Send (CRID, IMI) to underlying download manager. Returns a String value representing
a unigue identifier to identify the download if the (CRID, IMI) tuple is valid and is
accepted for triggering a download. If the OITF supports the
application/oipfDownloadManager as specified in section 7.4.3, this SHALL be the
value of the “id” attribute of the associated Download object(s), which corresponds to the
CRID in this case.

The OITF SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the given (CRID, IMI) tuple is not accepted for
triggering a download.

The values of the name, description, parentalRating and DRMControl properties
SHALL be based on the metadata provided for the item matching that CRID.

Arguments CRID The TV-Anytime Content reference ID that points to the general
information about the item to download that does not change
regardless of how the content is published or broadcast

IMI The TV-Anytime Instance Metadata ID that points to the specific
information related to the item to download, such as content location,
usage rules (pay-per-view, etc.) and delivery parameters (e.g. video
format).

downloadStart Optional argument indicating the time at which the download should be
started. If the argument is not included, or takes a value of null then
the download should start as soon as possible.

priority Optional argument indicating the relative priority of the download with
respect to other downloads registered by the same organisation as the
calling application. Higher values indicate a higher priority. If the
argument is not included then a priority of 0 shall be assigned.

7.4.3 The application/oipfDownloadManager embedded object

In a managed deployment, privileged applications may need access to the download management functionality in a CoD
system. This access may be required to implement a Ul to the download manager, to queue a download or to display the
progress of a specific download. OITFs SHOULD support an “application/oipfDownloadManager” object with
the following interface.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 101 (415)

Clients supporting the download management APIs as specified in this section SHALL indicate this by adding the
attribute “manageDownloads” to the <download> element with a value unequal to “none” in the client capability

description as defined in section 9.3.4.

The functionality as described in this section is subject to the security model of section 10.

7.4.3.1 State diagram for the appl

The following state machine provides an overview

ication/oipfDownloadManager object

of the state changes that are possible in the download manager. The

states reflect the changes signalled to applications via the onDown loadStateChange event handler.

registerDownload() updateRegisteredDownload()

-
N

Queued download j remove() @

start download updateRegisteredDownload()

{ Download in progress I

remove()

I

1

resume() or download pause()

resumes after completion of | | pre-empted by a
a higher priority download | | higher-priority download

temporary
or download failure recovery

]%pause()—[Download stalled remove()

—[Download paused

updateRegisteredDownload()

S
N

updateRegisteredDownIoad(‘)

Failed download J

Successful

remove()

download (

/LS

w remove()

uccessful download J

Figure 12: State diagram for embedded application/oipfDownloadManager objects (normative)

Note that newly-registered downloads may pre-empt downloads which are currently in progress, if they have a higher

priority than in-progress downloads. This may cau
intervention.

Volume 5 — Declarative Application Environment

se downloads to be paused or resumed without application

Copyright 2014 © Open IPTV Forum e.V.

Page 102 (415)

7.4.3.2 Properties

function onDownloadStateChange(Download item, Integer state, Integer reason)

The function that is called when the status of a download has changed. The specified function is called with
three arguments item, state and reason, which are defined as follows:

e Download item - the Download object whose state has changed.

e Integer state - the new state of the download. Valid values include:

Status Semantics

1 The download has completed successfully.

2 The download is in progress.

4 The download has been paused (either by an application or automatically by the OITF).

8 The download has failed.

16 The download has been queued but has not yet started.

32 The download has stalled due to a transient failure and the Download Manager is
attempting to recuperate and re-establish the download.

e Integer reason. Extended reason code. This is only valid if the value of the state argument is 8.

Reason Semantics
0 The local storage device is full.
1 The item cannot be downloaded (e.g. because it has not been purchased).
2 The item is no longer available for download.
3 The item is invalid due to bad checksum or length.
4 Other reason.

If no error has occurred, this argument SHALL take the value undefined.

readonly DisclInfo disclnfo

Get information about the status of the local storage device. The Disclnfo class is defined in section 7.16.4.

readonly Integer hasReserved

Returns the size (in megabytes) of any current reservation for the applications from the same organisation as
the calling application otherwise -1.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 103 (415)

readonly Integer allocated

Returns the size (in megabytes) of any current reservation for the applications from the same organisation as
the calling application otherwise -1.

7.4.3.3

Methods

Boolean pause(Download download)

Description Pause an in-progress, queued or stalled download and return true. For in-progress
downloads, more data SHALL NOT be downloaded until the download is resumed. The
HTTP request and TCP socket are interrupted and closed.
For completed or failed downloads, this operation SHALL return false.

Arguments download The download to be paused.

Boolean resume(Download download)

Description Resume a paused download. If the download is not paused, this operation SHALL return
false.
Arguments download The download to be resumed.

Boolean remove(Download download)

Description

Remove the download and any data and media content associated with it and return true.
Return false if the download attribute does not refer to a valid download.

As a side effect of this method, all properties on download SHALL be set to undefined.
Any method calls subsequently performed by an application which pass download as an
argument SHALL return false.

If an A/V Control object is referring to the indicated download for playback then the state of
the A/V Control object SHALL be automatically changed to state 6 (the error state).

Arguments

download The download to be deleted.

DownloadCollection getDownloads(String id)

Description

Returns a collection of downloads, for which the value of the Download. id property
corresponds to the given id parameter. The downloads returned in the collection SHALL
be filtered according to the value of the manageDownloads attribute of the <download>
element in the OITF'’s capability description (i.e. from the same application, same domain or
from all applications).

For downloads initiated from registerDownloadURL() with a contentType value
“application/vnd.oipf.ContentAccessDownload+xml” SHALL return null until the
Content Access Download Descriptor has been retrieved and parsed.

If the value of id is null I, it returns all downloads for the scope indicated by the
manageDownloads attribute.

Arguments

id Optional argument identifying the downloads to be retrieved. If present and
not nul I, this is an identifier corresponding to the “id” attribute of zero or

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 104 (415)

more Download objects. If the value of id is null, or the argument is not
included, all downloads for the scope indicated by the manageDownloads
attribute in the capability description are returned.

DownloadCollection createFilteredList(Boolean currentDomain, Integer states)

Description Create a filtered list of downloads. Returns a subset of downloads that are managed by the
receiver.
The currentDomain flag indicates whether downloads from FQDNSs other than the current
page are included in the returned collection. This flag MAY be set to one of three values:
Value Meaning
true The download is added if and only if it was initiated from the FQDN of
the calling document.
If the application has the permission permission_downloadmanager
(see section 10.1.4), only downloads initiated by the calling
application shall be added.
false The download is added if and only if it was not initiated from the
FQDN of the calling document.
If the application does not have the permission
permission_downloadmanager_all (see section 10.1.4), the OITF
SHALL return an empty collection.
undefined The download is added regardless of the domain that the download
was initiated from.
If the application has the permission permission_downloadmanager
(see section 10.1.4), only downloads initiated by the calling
application shall be added.
If the application has the permission
permission_downloadmanager_samedomain (see section 10.1.4),
only downloads initiated by applications from the same FQDN shall
be added.
The states flag indicates which state(s) of downloads that should be included in the list.
The value of this flag is the arithmetic sum of one or more possible values of the state
property of the Download object; only downloads whose state matches one of the values
included in this sum are included in the returned collection.
Arguments currentDomain Flag indicating whether downloads from other domains SHALL be

added to the list.

states Indicates that states of downloads that should be included in the
returned list.

Boolean updateRegisteredDownload(Download download, string newURL)

Description

The method updateRegisteredDownload() provides a way to update the URL to be
used for a download. The OITF SHALL use the new URL for any future retrieval.

If the download is already in progress or paused (indicated by a state property value of 4),
it SHALL be stopped. The download SHALL continue from the last byte received during the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 105 (415)

previous download.

If the state property of the download argument has the value 8 (download failed) or 32
(download stalled) then the OITF SHALL resume the download from the last byte received
during the previous download but using the new URL.

If the state property of the download argument has the value 16 (download not started)
no further action is taken until the download is started or resumed.

If the state property of the download argument has the value 1 (download completed)
then this method SHALL return false. Otherwise it SHALL return true.

Arguments

download The download object to be updated.

newURL The new URL from which the content can be retrieved.

Integer reserve(Integer bytes)

Description

Requests the reservation of space for downloads to be made by applications from the same
organization as the calling application. Reservation is OPTIONAL for applications to use
and applications may use the Download API without reserving space in advance

If there is already a reservation for the calling application’s organization, this requests
adjusting the reservation to the new value. If a call to reserve shrinks an already existing
reservation then the application SHOULD ensure that the new size is sufficient for all the
completed, in progress and requested downloads by applications from the calling
application’s organization. The OITF SHALL refuse to shrink the reservation if this has not
been done.

This specification intentionally does not define the criteria that are used in deciding whether
or not to make or adjust a reservation

Either the OITF or the end-user MAY cancel a reservation completely, shrink one to recover
some or all of the free space in the reservation or expand it. This specification intentionally
does not define circumstances when this may happen. If a request to reserve space is
granted to an organisation then applications from that organisation SHALL have the
reserved space available to them for downloads. Attempts to use more than the reserved
space SHALL fail.

A reservation is cancelled by calling this method with size zero.

Returns one of the RESERVE_ constants defined in section 7.4.3.5 below.

Arguments

bytes The number of bytes to reserve.

7.4.3.4

Events

For the intrinsic event “onDown loadStateChange”, a corresponding DOM event SHALL be generated, in the

following manner:

Intrinsic event Corresponding DOM event DOM Event properties

onDownloadStateChange DownloadStateChange Bubbles: No

Cancellable: No

Context Info: item, state , reason

NOTE: the above DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a Down loadStateChange event during the bubbling or the capturing phase.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 106 (415)

Applications that use DOM event handlers SHALL call the addEventListener () method on the
application/oipfDownloadManager object. The third parameter of addEventListener, i.e. “useCapture”,

will be ignored.

7.4.3.5 Constants

Name

Use

RESERVE_OK

Reservation succeeded

RESERVE_NEVER

Reservations by the calling application will never succeed.

RESERVE_USER_INTERVENTION_REQD

Reservation failed and user intervention is required. This result
SHALL only be returned by OITFs that include a platform
provided Ul enabling end-users to manage storage.
RESERVE_TOO_LARGE SHALL be returned in preference to
this if both apply

RESERVE_USER_DECL INED

Reservation failed as the user was asked to approve this
request and declined.

RESERVE_TOO_LARGE

Reservation failed as the size requested was larger than what is
permitted by the OITF.[I

RESERVE_SMALLER_THAN_USED

Request to shrink an already existing reservation failed as the
requested size is smaller than the space currently used from the
reservation.

RESERVE_UNKNOWN

Reservation failed for another reason.

7.4.4 The Download class

A Download object being made available by the appl ication/oipfDownloadManager embedded object
represents a content item that has either been downloaded from a remote server or is in the process of being downloaded.

If the ID of a download is a TV-Anytime CRID, then the values of the name, description and parentalRatings
properties SHALL be set by the OITF based on the metadata provided for the item matching that CRID.

In order to preserve backwards compatibility with already existing DAE content the JavaScript toString() method
SHALL return the Download. id for Download objects.

7.4.4.1 Properties

readonly Integer totalSize

The total size (in bytes) of the download.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 107 (415)

readonly Integer state

The current state of the download. When this changes, a DownloadStateChange event SHALL be
generated. Valid values are:

Value Description

1 The download has completed.

2 The download is in progress.

4 The download has been paused (either by an application or automatically by
the platform).

8 The download has failed.

16 The download is queued but has not yet started.

32 The download has stalled due to a transient failure and the Download
Manager is attempting to recuperate and re-establish the download.

Note: these values are used as a bitfield in the DownloadManager .createFilteredList() method.

readonly Integer reason

The reason property is only valid if the value of the state property is 8 (download failed).

Reason Semantics
0 The local storage device is full.
1 The item cannot be downloaded (e.g. because it has not been purchased).
2 The item is no longer available for download.
3 The item is invalid due to bad checksum or length.
4 Other reason.

If no error has occurred, this argument SHALL take the value undefined.

readonly Integer amountDownloaded

The amount of data that has been downloaded returned in bytes, or zero if no data has been downloaded.

readonly Integer currentBitrate

The bitrate (in bits per second) at which the download is currently transferred. This value is non-zero only
when the Download object is in state 2 (in progress) If this is unknown the value of this property SHALL be

undefined.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 108 (415)

String name

The name of the download or undefined if this information is not present. In case the download is triggered
through a Content Access Download Descriptor, this corresponds to the value for the <Title> element in
the Content Access Download Descriptor.

If the Content Access Download Descriptor is not specified then the property may be set by the origin site.
Note that the property may only be set by the site that initiated the download. The DAE application may store
data related to the Download. The OITF SHALL support a minimum of 200 bytes for the property. If DAE
application attempts to store a string larger than the available size the OITF SHALL set the property to NULL.
The maximum length of the property value is implementation dependent.

readonly String id

The ID of the download as determined by the OITF.

readonly String uri

A uri identifying the content item in local storage according to [RFC3986]. The format of the URI is outside
the scope of this specification except that;

e the scheme SHALL NOT be one that is included in this specification
e the URI SHALL NOT include a fragment

readonly String contentURL

The URL the content is being fetched from, or undefined if this information is not available.

String description

A description of the download or undefined if this information is not present. In case the download is
triggered through a Content Access Download Descriptor, this corresponds to the value for the <Synopsis>
element in the Content Access Download Descriptor, or undefined if this element is not present.

If the Content Access Download Descriptor is not specified the property may be set by the origin site. Note
that the property may only be set by the site that initiated the download. The DAE application may store data
related to the Download. The OITF SHALL support a minimum of 2000 bytes for the property. If DAE
application attempts to store a string larger than the available size the OITF SHALL set the property to NULL.
The maximum length of the property value is implementation dependent.

readonly ParentalRatingCollection parentalRatings

The parental rating collection related to the downloaded content item, or undefined if this information is not
present. In case the download is triggered through a Content Access Download Descriptor, this corresponds
to the value for the <ParentalRating> element in the Content Access Download Descriptor, or undefined
if this element is not present.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 109 (415)

readonly DRMControlInfoCollection drmControl

The DRMControl Information object corresponding to the DRM Control information of the downloaded

content item, or undefined if this information is not present. In case the download is triggered through a

Content Access Download Descriptor, this corresponds to the value for the <DRMControl Information>
element associated with the same DRMSystemlD of the selected <ContentURL>, or is undefined if this

information is not present.

The related DRMControl Information object is defined in section 7.4.6.

readonly Date startTime

The time that the download is scheduled to start (in the case of scheduled downloads) or undefined if no
start time was set.

readonly Integer timeElapsed

The time (in seconds) that has elapsed since the download of the item was started. The elapsed time SHALL
be based on the time spent in the in-progress and stalled download states. This SHALL NOT include any
time the item spent queued for download.

readonly Integer timeRemaining

The estimated time remaining (in seconds) for the download to complete. The estimated time SHALL be
based on the time spent in the in-progress and stalled download states. The estimate SHALL NOT include
any time the item spent queued for download or paused. If an estimate cannot be calculated, the value of this
property SHALL be undefined.

readonly String transferType

In case the download was triggered through a Content Access Download Descriptor, this is the value of
property TransferType of the selected <ContentURL>. In the case where the download was not triggered
through a Content Access Download Descriptor, the OITF is responsible for returning either the value
“playable_download” or “ful I_download”, based on criteria defined by the OITF.

readonly String originSite

In the case where the download was triggered through a Content Access Download Descriptor, this is the
value of element <OriginSite>. In case the download was not triggered through a Content Access
Download Descriptor, this is the FQDN of the site that initiated the download.

readonly String originSiteName

In case the download is triggered through a Content Access Download Descriptor, this is the value of
element <OriginSiteName>, or undefined if this information is not present. In case the download is not
triggered through a Content Access Download Descriptor, this property is undefined.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 110 (415)

String contentlD

A unique identification of the content item relative to originSite. In case the download is triggered through a
Content Access Download Descriptor, and a <ContentID> element has been defined for the given content
item, this is the value of element <ContentlID>. If the download is started using
registerDownloadFromCRID(Q), this is the TV Anytime CRID. This property shall take the value undefined
if no content ID is available.

If the Content Access Download Descriptor is not specified the property may be set by the originSite. Note
that the property may only be set by the site that initiated the download. The DAE application may store data
related to the Download. The OITF SHALL support a minimum of 2000 bytes for the property. If DAE
application attempts to store a string larger than the available size the OITF SHALL set the property to NULL.
The maximum length of the property value is implementation dependent.

readonly String iconURL

The URL of an image that provides a visual representation of the item that is being downloaded. In the case
where the download was triggered a Content Access Download Descriptor, this is the value of element
<lconURL>, or undefined if this element is not present. In the case where the download was not triggered
through a content access descriptor document, this property is undefined.

readonly Document metadata

For downloads registered through a Content Access Download Descriptor, this function SHALL return the
contents of the Content Access Download Descriptor as an XML Document object using the syntax as
defined in section E.1 without using any namespace definitions.

For downloads registered using a URL, the value of this property SHALL be null.

readonly Integer priority

The relative priority of the download with respect to other downloads registered by that application. Higher
values indicate a higher priority.

readonly Boolean suspendedByTerminal

Flag indicating whether the download has been paused automatically by the OITF, either because the
download has been pre-empted by higher priority downloads or because the number of simultaneous
downloads supported by the OITF has been exceeded.

7.4.5 The DownloadCollection class

typedef Collection<Download> DownloadCollection

The DownloadCol lection class represents a collection of Download objects. See Annex K for the definition of the
collection template.

7.4.6 The DRMControlinformation class

A DRMControl Information object represents the DRM Control information structure defined in section 3.3.2 of
[OIPF_METAZ].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 111 (415)

7.4.6.1 Properties

readonly String drmType

URN containing the decimal number format of the DVB CASystemID, prefixed with the string
"urn:dvb:casystemid:". For example, the hexadecimal value 0x4AF4 is assigned as the CASystemID for
Marlin by DVB, and so for Marlin the value of this property would be “urn:dvb:casystemid:19188".

readonly String rightslssuerURL

A URL used by OITF to obtain rights for this content item.

readonly String silentRightsURL

A URL used by OITF to obtain rights silently, e.g. a Marlin Action Token.

readonly String drmContentlD

DRM Content ID for CoD or scheduled content item, e.g. the Marlin Content ID.

readonly String previewRightsURL

A URL used by OITF to obtain rights silently for preview of this content item, e.g. a Marlin Action Token.

readonly String drmPrivateData

Private data for the DRM scheme indicated in drmType to be applied for this content item. Private DRM Data
is actually structured as an XML document whose schema is specific to the considered DRM system. One
example is Marlin DRM private data schema defined in [OIPF_CSP2].

readonly Boolean doNotRecord

A flag indicating whether this content item is recordable or not.

readonly Boolean doNotTimeShift

A flag indicating if this content item is allowed for time shift play back.

7.4.7 The DRMControliInfoCollection class

typedef Collection<DRMControl Information> DRMControl InfoCollection

The DRMControl InfoCol lection class represents a collection of DRMControl Information objects. See Annex
K for the definition of the collection template.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 112 (415)

7.5 Content On Demand Metadata APIs

This section SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a “type”
attribute with value “bcg” in the capability description and MAY apply for OITFs that have indicated
<clientMetadata> with value “true” and a “type” attribute with value “dvb-si”

7.5.1 The application/oipfCodManager embedded object

OITFs that have indicated <clientMetadata> with value “true” and a “type” attribute with value “bcg” SHALL
implement an “appl ication/oipfCodManager” embedded object with the following interface.

Content is organised into catalogues, where each catalogue contains a hierarchy of folders that are used to organise
individual content items. The structure of the catalogue SHALL be determined by the server managing that catalogue and
SHALL be reflected in the structure of the metadata passed to the OITF,

The three types of content in a CoD catalogue are:

= Assets, represented by the CODAsset class. A CODAsset is a user-level description of a piece of CoD content,
and so it is more concerned with information such as the price, rental period, description and parental rating
rather than detailed technical information about the asset such as encoding format. A CoD asset MAY represent
a single movie, or a bundle of movies offered for a single price.

= Folders, represented by the CODFolder class.

= Services represented by the CODService class. CODService objects are a specific type of container
representing subscription VoD (SVOD) services, where users purchase a group of assets which may change over
time rather than a single movie or TV show.

The CODAsset, CODFolder and CODService classes define a type property that allows these classes to be
distinguished by applications. For each class, this property SHALL take the value defined below:

Class Value
CODFolder 0
CODAsset 1
CODService 2

This specification defines the mapping between the CoD API and BCG metadata. Mappings between the CoD API and
other CoD metadata sources are not specified in this document.

7.5.1.1 Properties

readonly ContentCatalogueCollection catalogues

A collection of all available CoD catalogues, as listed in an SD&S BCG Discovery record.

function onContentCatalogueEvent(Integer action)

This function is the DOM 0 event handler for events relating to changes in a content catalogue collection.
The specified function is called with the argument action:

e Integer action - The type of event. For current versions of the specification, this property SHALL
always have the value 0 to indicate a change in the list of available catalogues.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 113 (415)

function onContentAction(Integer action, Integer result, Object item,
ContentCatalogue catalogue)

This function is the DOM 0 event handler for events relating to actions carried out on an item in a content
catalogue. The specified function is called with the following arguments:

e Integer action - The type of action that the event refers to. Valid values are:

Value Description
0 An operation to browse a content collection (e.g. getting a page from the collection).
1 Indicates that more information is available about this item (e.g. that more
information has been retrieved from the server).

e Integer result- The result of the action. Valid values are:

Value Description
0 The operation succeeded.
1 The item no longer exists in the catalogue.
2 The server has not responded in the timeout period.
3 Communication with the server has been interrupted.

e Object item- The item in the catalogue that the event refers to.

e ContentCatalogue catalogue - The parent catalogue of the affected object.

7.5.1.2 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onContentCatalogueEvent ContentCatalogueEvent Bubbles: No
Cancellable: No

Context Info: action

onContentAction ContentAction Bubbles: No
Cancellable: No

Context Info: action, result,
item, catalogue

NOTE: the above DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving the events listed above during the bubbling or the capturing phase. Applications that
use DOM event handlers SHALL call the addEventListener () method on the Local System object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 114 (415)

7.5.2 The ContentCatalogueCollection class

typedef Collection<ContentCatalogue> ContentCatalogueCollection

The ContentCatalogueCol lection class represents a collection of ContentCatalogue objects. See Annex K
for the definition of the collection template.

7.5.3 The ContentCatalogue class
A ContentCatalogue represents a content catalogue for a content on demand service.

To receive events relating to operations on items in a catalogue, applications MAY add listeners for “ContentAction”
events to the appl ication/oipfCodManager object.

7.5.3.1 Properties

readonly String name

The name of the content catalogue that should be displayed to the user. The value of this property is given
by the Name element in the catalogue's BCG discovery record.

readonly CODFolder rootFolder

The root folder of the content catalogue.

7.5.3.2 Methods

CODFolder getPurchaseHistory()

Description Get the list of items that have been purchased from the catalogue by the current user,
including currently active rentals.

Items in this list will be derived from children of the BCG UserActionList element which
have an ActionType of buy. If the ActionList element is not present, this method
SHALL return nul l.

7.5.4 The ContentCatalogueEvent class

This section is intentionally left empty.

75.5 The CODFolder class

CODFolder represents a folder in a CoD catalogue. Folders may contain other folders, and an asset may be present in
more than one folder.

Because a content list may contain a large number of items, the contents of the list are made available on demand using a
paging model. Applications MAY request the contents of the list in ‘pages’ of an arbitrary size. The data SHALL be
fetched from the appropriate source, and application SHALL be notified when the data is available.

Each folder is described by a GroupInformation element in the BCG Group Information Table.

7.5.5.1 Properties

readonly Integer type

The type of the item, used to distinguish between the types of objects that may be contained in a folder in a
CoD catalogue. This SHALL always have the value 0 for folders.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 115 (415)

readonly String uri

The URI used to refer to the folder. The value of this property is given by the Groupld attribute of the
GroupInformation element representing this folder.

readonly String name

The name of the folder. The value of this property is given by the Title element that is a descendant of the
GroupInformation element representing this folder.

readonly String description

A description of the folder, for display to an end user. The value of this property is given by the Synopsis
element that is a descendant of the GroupInformation element representing this folder.

readonly String thumbnailUri

The URI of an image associated with this folder.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Promotional Still Image, the value of this property is given by the MediaURI element that is a
descendant of that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

readonly Integer length

The number of items in the current page. If getPage() has not yet been called, the value of this property
SHALL be undefined.

readonly Integer currentPage

The page number of the currently-available results, as specified in the last call to getPage(). If getPage()
has not yet been called, the value of this property SHALL be undefined.

readonly Integer pageSize

The number of items that were requested from the content catalogue in a call to getPage(). This MAY be
different form the number of items that are available (e.g. the last page in the collection).

If getPage () has not yet been called, the value of this property SHALL be undefined.

readonly Integer totalSize

The total number of items in the folder. This MAY be undefined until getPage() has been called.

The value of this property may be given by the numOf1tems attribute of the GroupInformation element

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 116 (415)

representing this folder.

7552 Methods

Object item(Integer index)

Description Return the item at position index in the current page, or undefined if no item is present at
that position. This function SHALL only return objects that are instances of CODAsset,
CODFolder, or CODService.

Applications SHALL be able to access items in the collection using array notation instead of
calling this method directly.

Arguments index The index into the collection.

void getPage(Integer page, Integer pageSize)

Description Retrieve one page of the folder’s contents. The application SHALL be notified by an event
targeted at the folder's parent content catalogue when the data is available.

Calls to this method SHALL cancel any outstanding requests.

Arguments page The number of the page for which data should be retrieved, indexed from
zero.
pageSize The size of the page.

void abort()

Description Abort the current request for a new page of folder contents. Any results for this folder
SHALL be removed (i.e. the value of the length property will be 0 and any calls to the
item() method SHALL return undefined),

7.5.6 The CODAsset class

The CODAsset represents a piece of CoD content that can be purchased and played. A CODAsset object MAY refer to
a bundle of content items that are purchased together but which can only be played individually.

Some fields of a CODAsset object MAY not be populated until an application requests them; in this case the data MAY
be fetched asynchronously from a server. Fields where the data has not been fetched from the server SHALL have a
value of undefined. Fields for which data is not available on the server SHALL have a value of nul I.

Note: The lookupMetadata() method has been removed from this class.

7.5.6.1 Properties

readonly Integer type

The type of the item, used to distinguish between the types of objects that may be contained in a folder in a
CoD catalogue. This property SHALL always have the value 1 for CoD assets.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 117 (415)

readonly String uri

The CRID of the asset. The value of this property is given by the programld attribute of the BCG
Programinformation element that describes the asset.

readonly String name

The title of the asset that will be displayed to the user. The value of this property is given by the BCG Title
element that is a child of the asset’s BasicDescription element.

readonly String description

A description of the asset, for display to an end user. The value of this property is given by the BCG
Synopsis element that is a child of the asset’s BasicDescription element.

readonly StringCollection genres

A collection of genres that describe this asset. Genres are represented by the values of any Name elements
that are children of Genre elements in the asset’s description.

readonly ParentalRatingCollection parentalRatings

The parental rating value of the asset. This information will be read from the ParentalGuidance element of
an asset’s description, if present.

readonly Boolean blocked

Flag indicating whether the asset is blocked due to parental control settings (i.e. whether its parental rating
value exceeds the current system threshold).

readonly Boolean locked

Flag indicating whether the current state of the parental control system prevents the asset from being viewed
(e.g. a correct parental control PIN has not been entered to allow the item to be viewed).

readonly String thumbnailUri

The URI of an image associated with this asset.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Promotional Still Image, the value of this property is given by the MediaURI element that is a
descendant of that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 118 (415)

readonly String price

The price of the asset, in a form that can be displayed to the user. The value of this property is the
concatenation of the value of the Price element that is a child of a Purchaseltem element in the asset’s
description and the value of the Price element’s currency attribute.

For example, a Price element of
<Price currency="JPY">500</Price>

would give the value 500 JPY for this field. Implementations MAY replace the currency code with the
appropriate currency symbol (e.g. ¥).

readonly Integer rentalPeriod

The period for which the asset can be rented, in hours.

For assets descriptions containing a Purchase element with a PurchaseType of
urn:tva:metadata:cs:PurchaseTypeCS:2004:playForPeriod, the value of this property is derived
from the QuantityUnit and QuantityRange elements that are children of that Purchase element. If a
Purchase element with the appropriate PurchaseType is not present, the value of this field SHALL be
undefined.

readonly Integer playCount

The number of plays allowed for this asset when it is purchased.

For assets descriptions containing a Purchase element with a PurchaseType of
urn:tva:metadata:cs:PurchaseTypeCS:2004:playCounts, the value of this property is derived from
the QuantityUnit and QuantityRange elements that are children of that Purchase element. If a
Purchase element with the appropriate PurchaseType is not present, the value of this field SHALL be
undefined.

readonly Integer duration

The duration of the asset, in seconds. The value of this property is given by the BCG Duration element that
is a child of the asset’s BasicDescription element.

readonly String previewUri

The URI used to refer to a preview of the asset.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Trailer or Preview, the value of this property is given by the MediaURI element of the MedialLocator
contained in that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

readonly BookmarkCollection bookmarks

A collection of the bookmarks set in a recording. If no bookmarks are set, the collection SHALL be empty.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 119 (415)

7.5.6.2 Methods

Boolean isReady()

Description Check whether sufficient information is available to make a purchase or play the asset.

Due to the asynchronous nature of CoD catalogues, not all of the information required to
play or purchase a CoD asset may have been received by the OITF at any given time. If all
of the required information is available, this method SHALL return true. Otherwise, this
method SHALL request the missing information and return false. When the information is
available, the application SHALL be notified via a ContentAction event with the reason
code 1.

7.5.7 The CODService class

The CODService class is a subclass of CODFolder that represents a subscription CoD service. A subscription CoD
service is similar to a folder, except that:

= The service SHALL be purchased in its entirety, rather than purchasing individual items from the service.

= Business rules may prevent browsing of the content within a service unless the service has already been
purchased.

A CODService MAY contain a number of assets, folders and services.

Note: The lookupMetadata() method and uid property has been removed from this class.

7.5.7.1 Properties

readonly Integer length

The number of items in the current page of the service.

readonly Integer currentPage

The page number of the currently-available results, as specified in the last call to getPage(). If getPage()
has not yet been called, the value of this property SHALL be undefined.

readonly Integer pageSize

The number of items that were requested from the content catalogue in a call to getPage(). This MAY be
different from the number of items that are available (e.qg. the last page in the collection).

If getPage () has not yet been called, the value of this property SHALL be undefined.

readonly Integer totalSize

The total number of items in the service. This MAY be undefined until getPage() has been called.

The value of this property may be given by the numOf1tems attribute of the Group Information element
representing this folder.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 120 (415)

readonly Integer type

The type of the item, used to distinguish between the types of objects that may be contained in a folder in a
CoD catalogue. This property SHALL always have the value 2 for a CoD service.

readonly String uri

The URI used to refer to the service. The value of this property is given by the BCG ServiceURL element
that is a child of the Servicelnformation element that describes the service.

readonly String name

The name of the service that will be displayed to the user. The value of this property is given by the BCG
Name element that is a child of the Servicelnformation element describing the service.

readonly String description

A description of the service, for display to an end user. The value of this property is given by the BCG
ServiceDescription element that is a child of the Servicelnformation element describing the service.

readonly String thumbnailUri

The URI of an image associated with this service. The value of this property is derived from the value of the
first Logo element that is a child of the BCG Servicelnformation element describing the service. If this
element specifies anything other than the URL of an image, the value of this property SHALL be undefined.

Alternatively, for services whose BCG description contains a RelatedMaterial element indicating a
relationship of Promotional Still Image, the value of this property is given by the MediaUR1 element of
the MediaLocator contained in that element.

For assets without an appropriate RelatedMaterial or Logo element, the value of this property shall be
undefined.

readonly String previewUri

The URI used to refer to a preview of the content.

For services whose BCG description contains a RelatedMaterial element indicating a relationship of
Trailer or Preview, the value of this property is given by the MediaURI element of the MedialLocator
contained in that element.

For services without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 121 (415)

75.7.2 Methods

Boolean isReady()

Description Check whether sufficient information is available to make a purchase. Due to the
asynchronous nature of CoD catalogues, not all of the information required to play or
purchase a CoD service may have been received by the OITF at any given time. If all of
the required information is available, this method SHALL return true. Otherwise, this
method SHALL request the missing information and return false. When the information is
available, the application SHALL be notified via a ContentAction event with the action
code 1.

Object item(Integer index)

Description Return the item at position index in the current page, or undefined if no item is present at
that position. This function SHALL only return objects that are instances of CODAsset,
CODFolder, or CODService.

Applications SHALL be able to access items in the collection using array notation instead of
calling this method directly.

Arguments index The index into the collection.

void getPage(Integer page, Integer pageSize)

Description Retrieve one page of the services contents. The application SHALL be notified by an event
targeted at the services parent content catalogue when the data is available.

Calls to this method SHALL cancel any outstanding requests.

Arguments page The number of the page for which data should be retrieved, indexed from
zero.
pageSize The size of the page.

void abort()

Description Abort the current request for a new page of contents. Any results SHALL be removed (i.e.
the value of the 1ength property will be 0 and any calls to the item() method SHALL
return undefined).

7.6 Content Service Protection API

The following requirements SHALL apply to OITF and/or server devices which have indicated support for DRM
protection by providing one or more <drm> elements as specified in section 9.3.10:

7.6.1 The application/oipfDrmAgent embedded object

An OITF SHALL support a non-visual embedded object of type “application/oipfDrmAgent”, with the following
JavaScript API, to enable in-session message exchange from the web page with an underlying DRM agent.

Access to the functionality of the appl ication/oipfDrmAgent embedded object SHALL adhere to the security
requirements as defined in section 10.1.

Note: Annex D provides a clarification to the browser interaction model when dealing with protected content

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 122 (415)

7.6.1.1

Properties

function onDRMMessageResult(String msglD, String resultMsg,
Integer resultCode)

The function that is called when the underlying DRM agent has a result message to report to the current
HTML document as a consequence of a call to sendDRMMessage. The specified function is called with three

arguments msglD, resultMsg and resultCode which are defined as follows:

e String msglD — identifies the original message which has led to this resulting message.

e String resultMsg — DRM system specific result message.

e Integer resultCode —result code. Valid values include:

Result Description Semantics
message
0 Successful The action(s) requested by sendDRMMessage ()
completed successfully.
1 Unknown error sendDRMMessage () failed because an unspecified
error occurred.
2 Cannot process sendDRMMessage () failed because the DRM agent
request was unable to complete the request.
3 Unknown MIME sendDRMMessage () failed, because the specified
type Mime Type is unknown for the specified DRM system
indicated in the DRMSystemld.
4 User consent sendDRMMessage () failed because user consent is
needed needed for that action.
5 Unknown DRM sendDRMMessage () failed, because the specified
system DRM System in DRMSystemld is unknown.
6 Wrong format sendDRMMessage () failed, because the message in
msg has the wrong format.

function onDRMSystemStatusChange(String DRMSystemlID)

The function that is called when the status of a DRM system changes.

The specified function is called with one argument DRMSystemID which is defined as follows:

e String DRMSystemlD — argument that specifies the DRM System ID of the DRM system that

generated the event as defined by element DRMSystemlID in Table 9 of section 3.3.2 of
[OIPF_METAZ2].

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 123 (415)

function onDRMSystemMessage(String msg, String DRMSystemlD)

The function that is called when the underlying DRM system has a message to report to the current HTML

document.

The specified function is called with two arguments msg and DRMSystemID and msg which are defined as

follows:

e String msg— DRM system specific message

e String DRMSystemlD — argument that specifies the DRM System ID of the DRM system that
generated the event as defined by element DRMSystemlID in Table 9 of section 3.3.2 of
[OIPF_METAZ].

7.6.1.2

Methods

String sendDRMMessage(String msgType, String msg, String DRMSystemiID)

Description Send message to the DRM agent, using a message type as defined by the DRM system.
Returns a unique ID to identify the message, to be passed as the ‘msg1D’ argument for the
callback function registered through onDRMMessageResult. This is an asynchronous
method. Applications will be notified of the results of the operation via events dispatched to
onDRMMessageResult and corresponding DOM events.

Arguments msgType A globally unique message type as defined by the DRM system, for

example:
application/vnd.marlin.drm.actiontoken+xml
(i.e. MIME type of Marlin Action Token).
Valid values for the msgType parameter include the MIME types
described in Annex C of [OIPF_CSP2].
msg The message to be provided to the underlying DRM agent formatted

according to the message type as indicated by attribute msgType.

Valid format for the msg parameter are message formats described in
Annex C of [OIPF_CSP2].

DRMSystemID

DRMSystemID as defined by element DRMSystemID in Table 9 of
section 3.3.2 of [OIPF_METAZ2]. For example, for Marlin, the
DRMSystemID value is “urn:dvb:casystemid:19188".

In the case that parameter msgType indicates a CSPG-CI+ message as
described in section 4.2.3.4.1.1.2 of [OIPF_CSP2] or an embedded
CSPG message (see Annex F of [OIPF_CSP2]), the DRMSystemID
parameter SHALL be specified. Otherwise, the value may be null.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 124 (415)

Integer DRMSystemStatus(String DRMSystemlID)

Description Returns the status of the indicated DRM system, as defined below:
Value Description Semantics

0 READY The DRM system is fully initialised and ready.

1 UNKNOWN Unknown DRM system.

2 INITIALISING The DRM system is initialising and not ready to start
communicating with the application.

3 ERROR There is a problem with the DRM system. It may be
possible to communicate with it to obtain more
information.

Arguments DRMSystemID The DRM System ID of the DRM system that is being queried as defined

by the element DRMSystemlID in Table 9 of section 3.3.2 of
[OIPF_METAZ2]. For example, for Marlin, the DRMSystemlD value is
“urn:dvb:casystemid:19188".

Boolean canPlayContent(String DRMPrivateData, String DRMSystemlID)

Description

Checks the local availability of a valid license for playing a protected content item.

The function returns true if there is a valid license available locally that may allow playing the
content. For example the actual playing may be blocked due to other constraints (e.g.
video/audio output restrictions on selected output).

The DRMPrivateData may be retrieved by the application via a means out of scope of this
specification (e.g. retrieved from Service Platform, or from a manifest file). For already
downloaded content, the private data may be retrieved via the getDRMPrivateData()
method of the Download class. In case the download is triggered through a Content Access
Download Descriptor, the private data may be retrieved from the drmControl property.

Arguments

DRMPrivateData DRM proprietary private data.

DRMSystemID DRMSystemID as defined by element DRMSystemID in Table 9 of
section 3.3.2 of [OIPF_METAZ2]. For example, for Marlin, the
DRMSystemID value is “urn:dvb:casystemid:19188".

Boolean canRecordContent(String DRMPrivateData, String DRMSystemiD)

Description

Checks the local availability of a valid license for recording a protected content item.

The function returns true if there is a valid license available locally that may allow recording
the content.

The DRMPrivateData may be retrieved by the application via a means out of scope of this
specification (e.g. retrieved from Service Platform, or from a manifest file).

Arguments

DRMPrivateData DRM proprietary private data.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 125 (415)

DRMSystemID DRMSystemID as defined by element DRMSystemID in Table 9 of
section 3.3.2 of [OIPF_METAZ2]. For example, for Marlin, the
DRMSystemID value is “urn:dvb:casystemid:19188".

7.6.1.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onDRMMessageResult DRMMessageResult Bubbles: No
Cancellable: No

Context Info: msglID, resultMsg,
resultCode

onDRMSystemStatusChange DRMSystemStatusChange Bubbles: No
Cancellable: No
Context Info: DRMSystemlID

onDRMSystemMessage DRMSystemMessage Bubbles: No
Cancellable: No

Context Info: msg, DRMSystemlID

NOTE: the above DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. The addEventListener()
method SHOULD be called on the application/oipfDrmAgent object itself. The third parameter of
addEventListener, i.e. “useCapture”, will be ignored.

7.7 Gateway Discovery and Control APlIs

The application/oipfGatewayInfo object SHALL provide the information of the gateway and subsequently
interact with the gateway (e.g. IMS Gateway, Application Gateway, CSPG-Cl+ Gateway and CSPG-DTCP Gateway) as
defined in section 4.2. The OITF SHALL support the gateway discovery and control though the use of the following non-
visual embedded object:

<object id="gatewayinfo" type="application/oipfGatewaylnfo'>
Access to the functionality of the application/oipfGatewaylnfo embedded object is privileged and SHALL
adhere to the security requirements defined in section 10.1.
7.7.1 The application/oipfGatewaylnfo embedded object
7.7.1.1 Properties

readonly Boolean islGDiscovered

Readonly property that indicates whether an IMS Gateway is discovered or not.

NOTE: This property was formerly referred to as 1GDiscovery.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 126 (415)

readonly Boolean isAGDiscovered

Readonly property that indicates whether an Application Gateway is discovered or not.

NOTE: This property was formerly referred to as AGDiscovery.

readonly Boolean isCSPGCIPlusDiscovered

Readonly property that indicates whether a CSPG-Cl+ Gateway is discovered or not.

NOTE: This property was formerly referred to as cspGatewayDiscovery. The former
cspGatewayDiscovery property is now replaced with 1sCSPGCIPIusDiscovered for CSPG-Cl+ case and
isCSPGDTCPDiscovered for CSPG-DTCP case.

readonly Boolean isCSPGDTCPDiscovered

Readonly property that indicates whether a CSPG-DTCP Gateway is discovered or not.

NOTE: This property was formerly referred to as cspGatewayDiscovery. The former
cspGatewayDiscovery property is now replaced with 1sCSPGCIPIusDiscovered for CSPG-Cl+ case and
iSCSPGDTCPDiscovered for CSPG-DTCP case.

readonly String igURL

Readonly property that indicates the base Gateway's URL for interacting between an OITF and an IMS
Gateway.

readonly String agURL

Readonly property that indicates the base Gateway’s URL for interacting between an OITF and an
Application Gateway.

readonly String cspgDTCPURL

Readonly property that indicates the base Gateway’s URL for interacting between an OITF and an CSPG-
DTCP Gateway.

NOTE: This property was formerly referred to as cspGatewayURL which was relevant for CSPG-DTCP case
only.

Integer interval

Read-write property that specifies the periodic interval time(seconds) to discover the gateways. When the
interval property is set, an UPnP Discovery mechanism is executed.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 127 (415)

function onDiscoverlG()

The function that SHALL be called when an IMS Gateway is discovered or lost by the OITF which uses a
UPNP Discovery mechanism described in [OIPF_PROTZ2] section 10.1.1.1. The actual status of the gateway
(discovered or not) can be determined by reading the isIGDiscovered property.

The specified function is called with no arguments.

function onDiscoverAG()

The function that SHALL be called when an Application Gateway is discovered or lost by the OITF which
uses a UPnP Discovery mechanism described in [OIPF_PROTZ2] section 10.1.1.2. The actual status of the
gateway (discovered or not) can be determined by reading the iSAGDiscovered property.

The specified function is called with no arguments.

function onDiscoverCSPGDTCP()

The function that SHALL be called when an CSPG-DTCP Gateway is discovered or lost by the OITF. The
CSPG-DTCP gateway SHALL be discovered using a UPnP Discovery mechanism described in
[OIPF_PROTZ2] section 10.1.1.3. The actual status of the gateway (discovered or not) can be determined by
reading the isCSPGDTCPDiscovered property.

The specified function is called with no arguments.

NOTE: This property was formerly referred to as onDiscoverCSPG. The former onDiscoverCSPG property
is now replaced with onDiscoverCSPGCIPlus for CSPG-CIl+ case and onDiscoverCSPGDTCP for CSPG-
DTCP case.

readonly Boolean islGSupported

Readonly property that indicates whether an IMS Gateway is supported or not.

readonly Boolean isAGSupported

Readonly property that indicates whether an Application Gateway is supported or not.

readonly Boolean isCSPGCIPlusSupported

Readonly property that indicates whether a CSPG-Cl+ Gateway is supported or not.

readonly Boolean isCSPGDTCPSupported

Readonly property that indicates whether a CSPG-DTCP Gateway is supported or not.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 128 (415)

function onDiscoverCSPGCIPIus()

The function that SHALL be called when a CSPG-CI+ Gateway is discovered or lost by the OITF (including
any change to the DRM systems supported by that gateway). The CSPG-CIl+ Gateway SHALL be discovered
as defined in [OIPF_CSP2]. The actual status of the gateway (discovered or not) can be determined by
reading the isCSPGCIPlusDiscovered property.

The specified function is called with no arguments.

NOTE: This property was formerly referred to as onDiscoverCSPG. The former onDiscoverCSPG property is
now replaced with onDiscoverCSPGCIPlus for CSPG-CIl+ case and onDiscoverCSPGDTCP for CSPG-
DTCP case.

readonly StringCollection CSPGCIPIusDRMType

Readonly property that indicates the list of CA Systems supported by the CSPG-Cl+ Gateway under the form
of URN with the DVB CASystemID (16 bit number) in there. Each element of CSPGCI1P lusDRMType shall be
signalled by prefixing the decimal number format of CA_System_ID with "urn:dvb:casystemid:".

7.7.1.2 Methods

Boolean islGSupportedMethod(String methodName)

Description Shall return true when the 1G supports the method specified in the ‘methodName’
argument. If the function returns false, it indicates that IG does not support the specified
method.

Arguments methodName The name of the method to be checked for support.

7.7.1.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onDiscoverlG DiscoverlG Bubbles: No

Cancellable: No

onDiscoverAG DiscoverAG Bubbles: No

Cancellable: No

onDiscoverCSPGDTCP DiscoverCSPGDTCP Bubbles: No

Cancellable: No

onDiscoverCSPGCIPlus DiscoverCSPGCIPlus Bubbles: No

Cancellable: No

NOTE: the above DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM
event handlers SHALL call the addEventListener () method on the application/oipfGateway Info object.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 129 (415)

7.8 Communication Services APIs

If an OITF has indicated support for the control of its Communication Services functionality by a server by stating
<communicationServices>true</communicationServices> as defined in section 9.3.9 in its capability
description, the OITF SHALL support communication services through the use of the following non-visual object:

<object type="application/oipfCommunicationServices'"/>

The Communication Services APl provides the necessary JavaScript methods to register new users. It also provides
methods to register users (registerUser), along with the supported feature tags. A method getRegisteredUsers
is also defined to view all the registered users. A method getAl lUsers retrieves all users provisioned in the IG. Once
registered it is possible to switch users for using communication services by using method setUser.

A property is defined to view the current user to be used for a service (currentUser).

In order to handle the out-of-session communication services notifications, namely, the new dialogues, there is a method
for subscribing to these events (subscribeNotification). All new dialogues are communicated through a callback
function (onNotification) to the application instance performing the subscription.

The Communication Services APIs apply only to privileged applications and SHALL adhere to the security model as
defined in section 10.

7.8.1 The application/oipfCommunicationServices embedded object
7.8.1.1 Constants

Name Value Use

STATE_REGISTERED 0 Specifies that the user has been
successfully registered (not subscribed
to registration event).

This also represents the state when
the registration event subscription has
been terminated for some reason by
network.

STATE_REGISTERED_SUBSCRIPTION_PENDING 1 Indicates that user is registered
successfully but the subscription-state
for the registration event indicates a
status of "pending".

STATE_REGISTERED_SUBSCRIPTION_ACTIVE 2 Specifies that the user has been

successfully registered and subscribed
to registration event (i.e. subscription-
state for registration event indicates a
status of "active").

STATE_DEREGISTERED 3 Specifies that the user has been
successfully deregistered. This can be
result of network initiated/locally
initiated deregistration request.

STATE_FAILURE 4 Represents a failure condition.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 130 (415)

7.8.1.2 Properties

function onNotification(String responseHeaders, String msgText, Document msgXML)

This function is called on the application which called subscribeNotification when an unsolicited
notification arrives. The application will be notified of all notifications corresponding to any of the subscribed-
to feature tags regardless of which application subscribed to it.

The specified function is called with 3 arguments.

e String responseHeaders — The concatenated list of all HTTP headers, as a single string, with
each header line separated by a U+000D (CR) U+000A (LF) pair excluding the status line. In
absence of HNI-IGI interface, the responseHeaders will be a concatenated list all SIP headers, as
a single string, with each header line separated by a U+000D (CR) U+000A (LF) pair excluding the

status line.

e String msgText — the response entity body as a string, as defined in the XMLHttpRequest
specification as referenced in [OIPF_DAE2_WEB].

e Document msgXML — the response entity body as a Document, as defined in the XMLHttpRequest
specification as referenced in [OIPF_DAE2_WEB].

function onNotificationResult(Integer resultMsg)

This function is called with return result from the subscribeNotification method.

This function is not invoked in the case when there is no re-registration as part of subscribeNotification.

The specified function is called with a single argument — resultMsg.

e Integer resultMsg - result message from performing subscribeNotification method.

Result Description Semantics
message

0 Successful The action performed by the underlying functionality
was successful.

1 Unknown error The action performed by the underlying functionality
failed because an unspecified error occurred.

2 Wrong user credentials The user credentials was not accepted by the server.

3 The user doesn't exist. The user id doesn't exist in the local user table.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 131 (415)

function onRegistrationContextUpdate(String user, Integer state,
Integer errorCode)

This function is called with return result from the methods registerUser and deRegisterUser. In addition,
the function is also called whenever there is an update to the registration status of specified user.

The specified function is called with 3 arguments — user, state and errorCode.

e String user — The IMPU of the user.

e Integer state — The current state of the registration as indicated using the constant values
defined in section 7.8.1.1.

e Integer errorCode — In case of STATE_FAILED state, provides more information on reason for

failure.
errorCode Description Semantics

1 Unknown error The action performed by the underlying functionality
failed because an unspecified error occurred.

2 Wrong user credentials The user credentials were not accepted by the
server. The DAE may request from the user a new
PIN which can then be used to perform a new
registerUser with the provided PIN.

3 The user doesn't exist. The user id doesn't exist in the local user table.

readonly UserData currentUser

The current user property represents the public user identity which is being used or shall be used for HNI-IGI
communication. If not set then the default user shall be used or indicated. It shall be set to the default user if
a user has not been explicitly set using the setUser () method.

7.8.1.3 Methods

UserDataCollection getRegisteredUsers()

Description Return all the users that are currently registered with the IG.

Void registerUser(String userld, String pin)

Description This method performs user registration to the network.

Results from this method is sent to the callback method onRegistrationContextUpdate.

Arguments userld The user identifier represents the public user identity or IMPU.

pin The pin is optional and carries the password to be used towards the IG in case of
HTTP Digest over HNI-IGI interface or SIP Digest if there is no HNI-IGI. If pin is
not specified then the default user password shall be used.

The pin used for digest authentication is limited to the HNI-IGI interface with the
IG and SHALL NOT impact the HTTP Digest requests from within the DAE
application. Support for this parameter is not applicable for non-native HNI-IGI.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 132 (415)

void deRegisterUser(String userld)

Description The indicated user is de-registered. Any sessions that may be open are closed. De-
registration of default user has no effect nor de-registration of any users registered from a
native application in the OITF.

Results from this method is sent to the callback method onRegistrationContextUpdate.

Arguments userld The user identifier represents the public user identity or IMPU.

UserDataCollection getAllUsers()

Description

Return all the users that are currently provisioned in the IG. The first entry in the collection is
the default user. The users are retrieved according to [OIPF_PROT2] section 5.4.6.4

Boolean setUser(String userlid)

Description

When invoked, any ongoing sessions for the current user shall be closed.

If setUser is unsuccessful due to user not being registered, it is necessary to first register
the user and wait for a successful response to the onRegistrationContextUpdate
callback function.

If the user gets deregistered (either by the local application or by the network), any ongoing
sessions for the user shall be closed .The default user shall be automatically assumed for all
services until overridden again by the setUser method.

Argument

userld The user identifier represents the public user identity or IMPU.

void subscribeNotification(FeatureTagCollection featureTagCollection,
Boolean performUserRegistration)

Description

This method subscribes for new IMS out-of-session dialogues for the indicated application
for the currently active user. The notification shall be notified using onNotification
callback method.

If the application that made the subscription closes then there is an automatic un-
subscription to new notifications. Otherwise it is possible to perform
unsubscribeNotification.

Any new dialogues shall be notified over the callback method onNotification.

Arguments

featureTagCollection The featureTagCollection object of the DAE application. If the
value of this argument is NULL then all dialogs SHALL be
reported.

performUserRegistration If this is true a new user registration is required. SHOULD be
set to false if it is know that other applications will be
registered shortly

This parameter is ignored in the case when the filtering of
notifications is done locally. In this case, the initial registration
for active user will include all feature tags.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 133 (415)

void unsubscribeNotification()

Description The DAE application calling this method will be de-registered for notifications. Associated
feature tag(s) for the DAE application are removed from the featureTagCollection object for
the user. A re-registration will be performed for the corresponding user if notifications are not
locally filtered.

Results from this method is sent to the callback method onNotificationResult.

7.8.1.4 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onNotificationResult NotificationResult Bubbles: No
Cancellable: No

Context Info: resultMsg

onNotification Notification Bubbles: No
Cancellable: No

Context Info: callld,
contact, from, to

onRegistrationContextUpdate RegistrationContextUpdate Bubbles: No
Cancellable: No

Context Info: user, state,
errorCode

Note: these DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM
event handlers SHALL call the addEventListener () method on the
application/oipfCommunicationServices objectitself. The third parameter of addEventListener, i.e.
“useCapture”, will be ignored.

7.8.2 Extensions to application/oipfCommunicationServices for
presence and messaging services

If a client has indicated support for the control of its presence and messaging functionality by a server by stating
<presenceMessaging>true</presenceMessaging> as defined in section 9.3.9 in its capability description, the
client SHALL support Communication Services through the use of the following non-visual embedded object:

<object type="application/oipfCommunicationServices"/>

The presence and messaging API provides for instant messaging, presence and contact list services. The messages can
either be in a chat session using MSRP (see [OIPF_PROT2]) or page mode messages sent without a session. The support
of presence and messaging SHALL follow the OMA specification [PRES], [IM].

The Communication Services APl SHALL be supported in combined OITF and IG deployment cases. It MAY be
supported in other deployment cases. The use of the HNI-IGI interface is OPTIONAL between the OITF and IG when
these are co-deployed.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 134 (415)

7.8.2.1 Properties

function onIncomingMessage(String fromURI, String msg, Integer cid)

The function that is called when an incoming chat message is received for the active user.
The specified function is called with 3 arguments:

e String fromURI — The sender address of the message.

e String msg - The text message sent by the remote peer.

e Integer cid - Chat session identifier, either the same as one received from the openSession()
method or new if session is started by remote peer. Empty identifier if message is sent without a
session.

function onContactStatusChange(String remoteURI, Integer state)

This function is called when status has changed for a contact in the contact list or a user used with the
method subscribeToStatus ().

The specified function is called with two arguments:
e String remoteURI — The user address for which the status has changed.

e Integer state - Setto 1 if the user is present, and 0 if not. Other values may be defined in the
future.

function onNewWatcher(String remoteURI)

This function is called when a remote URI is requesting watcher authorization of the local user’s presentity.
The specified function is called with one argument:

e String remoteURI — The remote user address which requested watcher authorization.

7.8.2.2 Methods

Integer openChatSession(String toURI)

Description Opens a chat session with a remote user.

Returns an integer identifier for the chat session to be used when a message is sent in the
chat session or to match when incoming message is received.

Arguments toURI The address of the remote chat user.

void sendMessagelnSession(Integer cid, String msg)

Description Sends a new text message in a chat session. The chat can either be started by the user by
calling the method openChatSession() or can be a session received in the
onlncomingMessage callback function.

Arguments cid The chat session identifier.

msg Text message to send.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 135 (415)

void closeChatSession(Integer cid)

Description

Closes a chat session.

Arguments

cid

The chat session identifier.

void sendMessage(String toURI, String msg)

Description Sends a new text message to a remote peer without starting a session.
Arguments toURI The address of the remote chat user.
msg Text message to send.

void setStatus(Integer state)

Description

Sets the presence state of the local user.

Arguments

State

Set to 1 if the user is present, and 0 if not. Other values may be defined
in the future.

void subscribeToStatus(String remoteURI)

Description

Subscribe to status for a remote user.

Arguments

remoteURI

The address of the remote user.

ContactCollection getContacts()

Description

Get the users contact list.

void allowContact(String remoteURI)

Description

Allows the watcher authorization to subscribe to the local user’s presentity.

Arguments

remoteURI

The address of the remote user.

void blockContact(String remoteURI)

Description

Blocks the watcher authorization to subscribe to the local user’s presentity.

Arguments

remoteURI

The address of the remote user.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 136 (415)

Boolean createContactList(String contactListUri, ContactCollection contacts)

Description

Creates a contact list.

Arguments

contactListUri

The public user identity or IMPU of the contact list.

contacts

The collection of contact objects representing the members of the list.

ContactCollection getContacts(String contactListUri)

Description

Get the users in the specified contact list.

Arguments

contactListUri

The public user identity or IMPU of the contact list.

Boolean addToContactList(String contactListUri, Contact member)

Description

Updates the specified contact list by adding a new member to that list.

Arguments

contactListUri

The public user identity or IMPU of the contact list to be updated.

member

The new contact to be added to the list.

Boolean removeFromContactList(String contactListUri, Contact member)

Description

Updates the specified contact list by removing specified member from that list.

Arguments

contactListUri

The public user identity or IMPU of the contact list to be updated.

member

The new contact to be removed from the list

Boolean deleteContactList(String contactListUri)

Description

Deletes the specified contact list.

Arguments

contactListUri

The public user identity or IMPU of the contact list to be deleted

void allowAllContacts(String domain)

Description Allows all watchers belonging to specified domain authorization to subscribe to local user’s
presentity. If null, then all contacts will be allowed.
Arguments domain Watchers belonging to this domain are authorized to subscribe. If null,

then all watchers are authorized to subscribe irrespective of domain.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 137 (415)

void blockAllContacts(String domain)

Description Blocks all watchers belonging to specified domain from subscribing to local user’s
presentity. If nul'l, then all contacts will be blocked.

Arguments domain Watchers belonging to this domain are denied authorization to
subscribe. If null, then all watchers are blocked from subscribing
irrespective of domain.

7.8.2.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onlncomingMessage IncomingMessage Bubbles: No
Cancellable: No

Context Info: fromURI, msg, cid

onContactStatusChange ContactStatusChange Bubbles: No
Cancellable: No

Context Info: remoteURI, present

onNewWatcher NewWatcher Bubbles: No
Cancellable: No

Context Info: remoteURI

Note: these DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM
event handlers SHALL call the addEventListener () method on the
application/oipfCommunicationServices objectitself. The third parameter of addEventListener, i.e.
“useCapture”, will be ignored.

7.8.3 The UserData class
7.8.3.1 Properties

readonly String userld

The user identifier represents the public user identity or IMPU.

readonly FeatureTagCollection featureTags

The feature tag data is optional. It carries a collection of feature tag objects associated with an application.
For example the feature tag may be an ICSI or IARI or a feature tag identifying the service for. an incoming
instant messages. The object includes feature tags related to both DAE and native applications in OITF.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 138 (415)

readonly String friendlyName

The friendly name for the user. Used as display name in outgoing messages.

7.8.4 The UserDataCollection class

typedef Collection<UserData> UserDataCollection

The UserDataCol lection class represents a collection of UserData objects. See Annex K for the definition of the
collection template.

7.8.5 The FeatureTag class
7.8.5.1 Properties

readonly String featureTag

A string containing a featureTag value associated to an application. The featureTag value may have a value
of nul'l when used with the subscribeNotification() method on the
application/oipfCommunicationServices object. This indicates that all dialogues are reported.

The feature tag SHALL populate the X-OITF- headers as specified in [TISPAN] section 5.6.2, [IM], [3GPP TS
24.229], [RFC3840] and [RFC3841].

7.8.6 The FeatureTagCollection class

typedef Collection<FeatureTag> FeatureTagCollection

The FeatureTagCol lection class represents a collection of FeatureTag objects. See Annex K for the definition of
the collection template.

7.8.7 The Contact class
7.8.7.1 Properties

String contactild

The contact identifier represents the public user identity or IMPU used in communication with the contact.

String friendlyName

The friendly name for the user. Used as display name in outgoing messages.

7.8.8 The ContactCollection class

typedef Collection<Contact> ContactCollection

The ContactCol lection class represents a collection of Contact objects. See Annex K for the definition of the
collection template.

In addition to the methods and properties defined for generic collections, the ContactCol lection class supports the
additional methods defined below.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 139 (415)

7.88.1 Methods

Boolean remove(String contactld)

Description Removes the contact represented by contactld from the users contact list.

Returns true on success.

Arguments contactld Contact identifier of the user in the contact list.

Boolean add(Contact contact)

Description Adds the contact represented by the Contact object to the users contact list.

Returns true on success.

Arguments contact Contact object to be added from users contact list.

7.8.9 Extensions to application/oipfCommunicationServices for voice
telephony services

If an OITF has indicated support for full-duplex VVoice Telephony Services functionality by a server by stating
<telephony_services>true</telephony_services>, or

<telephony_services video="false”>true</telephony_services>, or
<telephony_services video=""true”>true</telephony_services>

as defined in section 9.3.9 in its capability description, the OITF SHALL support IMS through the use of the following
non-visual embedded object:

<object type="application/oipfCommunicationServices'"/>
The full-duplex Voice Telephony Services API provides support for managing the setup and life-cycle of a telephony call
session. It also provides the methods to manage the capture devices and the list of preferred codecs to be used.

The full-duplex Voice Telephony Services APl MAY be supported in the combined OITF and IG deployment cases as
well as the separated OITF and 1G case. It MAY be supported in other deployment cases. The use of the HNI-IGI
interface is OPTIONAL between the OITF and IG when these are co-deployed.

7.8.9.1 Properties

function onCallEvent(Integer eventType, Integer cid, Integer status,
String info)

The function that is called when an event related to the identified call is notified.
The specified function is called with four arguments:

e Integer eventType —the type of event. Valid values are:

Value Description
0 EVENT_INCOMING_CALL: an incoming call is received for the active user
1 EVENT_CALL_PROGRESS: called when the outgoing call is in progress (the

request has been received by the remote peer and the local signalling engine is
waiting for an answer).

2 EVENT_CALL_RESULT: notifies the result of an outgoing call.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 140 (415)

3 EVENT_HANGUP: called when the remote peer hang-up the call.

4 EVENT_SESSION_START: the call session is established and running (media
streams can be transmitted and rendered).

5 EVENT_SESSION_END: the call session ended and the related resources are
released.

6 EVENT_INCOMING_UPDATE: an incoming update request is received for the
active user. (*)

7 EVENT_UPDATE_RESULT: notifies the result of an outgoing update request. (*)

8 EVENT_SESSION_UPDATE: the update of the identified call session is active

(e.g.: additional media streams can be transmitted and rendered). (*)

9 EVENT_ERROR: notifies an error event raised during the identified call session.

(*) Values not supported for voice only telephony services

e Integer cid - call session identifier for the application (Call ID). Call IDs are unique, locally
generated positive integer values used to identify a call session.

e Integer status - status information on the event. The content depends on the event

e String info — text field with additional information. The content depends on the event.

The values of the cid, status and info parameters are defined according to the type of event. Any
parameters which are unused for an event SHALL have the value undefined.

EVENT_INCOMING_CALL
e cid: call session identifier for the application (Call ID).

e status: call type Identifier. Valid Call Type values are:

Value Description
0 AUDIO_ONLY: full-duplex voice only call
1 VIDEO_ONLY: full-duplex video only call (*)
2 AUDIO_VIDEO: full-duplex video call (voice + video) (*)

(*) Values not supported for voice only telephony services

e info: originating URI. The sender address of the call.

EVENT_CALL_PROGRESS
e cid: call session identifier for the application (Call ID).

e status: The type of notification coming from the call in progress. This release provides support for a
single value; extensions may be defined in future versions.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 141 (415)

Value Description

0 RINGING

EVENT_CALL_RESULT
e cid: call session identifier for the application (Call ID).

e status: the result of an outgoing call. Valid values are:

Value Description
0 ACCEPT: the call request has been accepted by the remote peer
1 REFUSE: the call request has been refused by the remote peer
2 TIMEOUT: the call request has been refused due to no response by the remote
peer
3 BUSY: the remote peer is currently busy
4 ABORT: a general error occurred

e info: if status is equal to 0 (ACCEPT), then the info parameter contains the string representing the
value of call type Identifier resulting from the negotiation between the peers. Valid Call Type values
are shown in the table below:

Value Description
0 AUDIO_ONLY: full-duplex voice only call
1 VIDEO_ONLY: full-duplex video only call (*)
2 AUDIO_VIDEO: full-duplex video call (voice + video) (*)

(*) Values not supported for voice only telephony services

EVENT_HANGUP

e cid: call session identifier for the application (Call ID).

EVENT_SESSION_START

e cid: call session identifier for the application (Call ID).

EVENT_SESSION_END

e cid: call session identifier for the application (Call ID).

EVENT_INCOMING_UPDATE
e cid: call session identifier for the application (Call ID).

e status: call type Identifier. Valid Call Type values are:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 142 (415)

Value Description
0 AUDIO_ONLY: full-duplex voice only call
1 VIDEO_ONLY: full-duplex video only call
2 AUDIO_VIDEO: full-duplex video call (voice + video)

EVENT_UPDATE_RESULT
e cid: call session identifier for the application (Call ID).

e status: the result of an outgoing call. Valid values are:

Value Description
0 ACCEPT: the call request has been accepted by the remote peer
1 REFUSE: the call request has been refused by the remote peer
2 TIMEOUT: the call request has been refused due to no response by the remote
peer
3 ABORT: a general error occurred

EVENT_SESSION_UPDATE

e cid: call session identifier for the application (Call ID).

EVENT_ERROR

e cid: call session identifier for the application (Call ID).

e status: the error code of the referenced call. Valid values are:

Value Description
0 ERROR_MEDIA: A media subsystem error
1 ERROR_SIGNALING: A signaling subsystem error

e info: supplementary textual information for the error identified by the status parameter.

readonly StringCollection callParameters

The list of call parameters supported.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 143 (415)

7.8.9.2

Methods

Integer call(String toURI, Integer callType)

Description Opens a telephony session with a remote user. Returns a unique, locally generated,
positive integer identifier for the call session (call session ID). Returns nul l if an error
occurred. The current specification provides support for a single active call session only.

Arguments toURI The address of the remote user.
callType Valid Call Type values are shown in the table below.

Value Description
0 AUDIO_ONLY: activate a full-duplex voice only call
1 VIDEO_ONLY: activate a video only call (*)
2 AUDIO_VIDEO: activate a full-duplex video call (*)

(*) Parameters and values not supported for voice only telephony services

Boolean answer(Integer cid, Integer response)

Description Answers an incoming call. Returns true if the method is successfully executed; false if an
error occurred.

Arguments cid Call session identifier for the application (Call ID).
response Valid response values are shown in the table below.

Value Description
0 ANSWER_ACCEPT: Accepts the incoming call
1 ANSWER_REFUSE: Refuses the incoming call
2 ANSWER_TIMEOUT: Refuses the incoming call due to no
answer from user
3 ANSWER_BUSY: Refuses the incoming call sending a busy

(*) Parameters and values not supported for voice only telephony services

Boolean hangUp(Integer cid)

Description Closes a telephony session. Returns true if the method is successfully executed; false if
an error occurred.
Arguments cid Call session identifier for the application (Call ID).

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 144 (415)

DevicelnfoCollection getDeviceList(Integer deviceType)

Description Returns the list of devices installed on the terminal (or connected) for a specific device type.
The device in the first position of the returned list is the default device to be used by the
terminal. The position of each device is consistent between method invocations as long as
no new devices are connected to the OITF or removed. If an error occurs, the method
returns nul l.

Arguments deviceType Valid types of device are shown in the table below.

Value Description
0 Audio Capture devices
1 Video Capture devices (*)
(*) Parameters and values not supported for voice only telephony services

Boolean setCaptureDevice(Integer deviceType, Integer devicelD)

Description

Sets the capture device (for a specific device type) that will be used during the call. This
method does not affect currently ongoing call sessions. Returns true if the method is
successfully executed; false if an error occurred.

If the application does not set capture devices (i.e. it does not invoke
setCaptureDevice()) then the devices that will be used for the next call session will be
the ones in the first position in the DevicelnfoCol lection objects returned by the
getDevicelList() method for each device type.

Arguments

deviceType Valid types of device are shown in the table below.

Value Description

0 Audio Capture devices

1 Video Capture devices (*)

(*) Parameters and values not supported for voice only telephony services

devicelD The specific Device Info object id property (in a
DevicelnfoCollection) identifying the capture device that will be used
for the call

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 145 (415)

CodeclInfoCollection getCodecList(Integer streamType)

Description Returns the list of codec available on the terminal for a specific stream type. If an error
occurs or no codecs are available for the specified stream type, the method returns nul I.
Arguments streamType Valid stream type values are shown in the table below.

Value Description
0 Audio
1 Video (*)

(*) Parameters and values not supported for voice only telephony services

Boolean setPreferredCodecList(Integer streamType,
CodeclInfoCollection preferredCodeclList)

Description Sets a list of preferred codec to be used in the call setup for a specific stream type. Returns
true if the method is successfully executed; false if an error occurred. Invocation of this
method does not affect currently ongoing call sessions.

Arguments streamType Valid stream type values are shown in the table below.

Value Description
0 Audio
1 Video (*)
(*) Parameters and values not supported for voice only telephony
services
preferredCodeclList List of codecs to be used during the call setup negotiation
(ordered by preference)

String getCallParameter(Integer cid, String parameter)

Description

Returns a parameter value for the call session identified by the cid parameter. This method
can be invoked before a call session creation or during an ongoing call session. If the cid
parameter is nul l then the retrieved settings will be those that will be applied to the next
call sessions that will be created (default for outgoing or incoming call). Returns the value of
the parameter or nul l if an error occurred or the parameter is not supported.

Arguments

cid

Call session identifier for the application (Call ID).

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 146 (415)

parameter

Mandatory values are shown in the table below. Parameter names are not

case sensitive.

Parameter I
Description
name
AUDIO_PAUSE | Audio transmission pause. The parameter can
be TRUE or FALSE.
VIDEO_PAUSE | Video transmission pause. The parameter can
be TRUE or FALSE. (¥)
VIDEO_FPS Captured video frame per second (*)
VIDEO_SIZE Captured video size (*)
e 176x144
e 352x288
e 640x480
MEDIA_BW Audio and video (if available) transmission
gross bandwidth (Kbps)

(*) Parameters and values not supported for voice only telephony services

String setCallParameter(Integer cid, String parameter, String value)

Description

Sets parameter value for the call session identified by the cid parameter. This method can
be invoked before a call session creation or during an ongoing call session. If cid
parameter is defined, then the settings will be applied to the call session identified by this
Call ID. If cid parameter is nul I then the settings will be applied at the next call sessions
that will be created (default for outgoing or incoming call). Returns true if the method is
successfully executed; false if an error occurred.

Arguments

cid

Call session identifier for the application (Call ID).

parameter

Mandatory values are shown in the table below. Parameter names are not
case sensitive.

Parameter -
Description
name
AUDIO_PAUSE | Audio transmission pause. The parameter can
be TRUE or FALSE.
VIDEO_PAUSE | Video transmission pause. The parameter can
be TRUE or FALSE. (¥)
VIDEO_FPS Captured video frame per second (*)
VIDEO_SIZE Captured video size (*)
o 176x144

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 147 (415)

o 352x288
e 640x480

MEDIA BW Audio and video (if available) transmission
gross bandwidth (Kbps)

(*) Parameters and values not supported for voice only telephony services

value The value for the parameter

7.8.9.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onCallEvent CallEvent Bubbles: No
Cancellable: No

Context Info: eventType, cid, status, info

Note: this DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications SHOULD
NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM event
handlers SHALL call the addEventListener() method onthe application/oipfCommunicationServices
object itself. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.8.10 Extensions to application/oipfCommunicationServices for video
telephony services

If an OITF has indicated support for full-duplex Video Telephony Services functionality by a server by stating
<telephony_services video="true'>true</telephony_services> as defined in section 9.3.9 in its
capability description, the OITF SHALL support communication services through the use of the following non-visual
embedded object:

<object type="application/oipfCommunicationServices'/>

The extensions for telephony services provide support for:
= Parameters and values related to video (identified by (*) in previous sections).

= Methods to manage the rendering of local and remote video streams through CEA-2014 A/V Control or HTML5
video element.

= Methods to send a session update request and to accept or refuse it. A session update is typically invoked when
users want to add video to their currently ongoing voice-only call session.

When a remote or local video is activated on a target CEA-2014 A/V Control or HTMLS5 video element, any currently
displayed video content on that object is stopped and released. The activated stream is automatically played.

The full-duplex Video Telephony Services API MAY be supported in the combined OITF and IG deployment cases as
well as the separated OITF and 1G case. It MAY be supported in other deployment cases. The use of the HNI-IGI
interface is OPTIONAL between the OITF and IG when these are co-deployed.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 148 (415)

7.8.10.1 Methods

Boolean showRemoteVideo(Integer cid, Integer mode, String idVideoCallObject)

Description Activates or deactivates remote peer video rendering. Returns true if the method is
successfully executed; false if an error occurred. This method can be invoked as soon as
a valid call id is available: after a call method invocation or when an incoming call is
notified.
Arguments cid Call session identifier for the application (Call ID).
mode Valid values are shown in the table below.
Value Description
0 Deactivates remote video
1 Activates remote video
idVideoCallObject ID attribute associated with the HTML tag of the A/V Control
object as defined in section 7.14 or HTMLS5 video element in
which the video frames will be rendered

Boolean showLocalVideoPreview(Integer cid, Integer mode, String idVideoCallObject)

Description Activates or deactivates local video preview. This method can be invoked before a call
session creation or during an ongoing call session. If cid parameter is defined, then the
local video stream will be one currently used in the call session identified by this Call ID. If
cid parameter is null then the local video stream will be the one that will be used in the next
call session that will be created (outgoing or incoming call). Returns true if the method is
successfully executed; false if an error occurred. This method can be invoked before or
after the call session setup

Arguments cid Call session identifier for the application (Call ID).
mode Valid values are shown in the table below.

Value Description
0 Deactivates local video preview
1 Activates local video preview
idVideoCallObject ID attribute associated with the HTML tag of the A/V Control object
as defined in section 7.14 or HTML5 video element in which the
video frames will be rendered

Boolean callUpdate(Integer cid, Integer callType)

Description

Requests an update for the call session identified by the cid parameter. Returns true if the
method is successfully executed; false if an error occurred.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 149 (415)

Arguments cid Call session identifier for the application (Call ID).
callType Valid values are shown in the table below.
Value Description
0 AUDIO_ONLY: activate a full-duplex voice only call
1 VIDEO_ONLY: activate a video only call
2 AUDIO_VIDEO: activate a full-duplex video call (voice
+ video)

Boolean callAnswerUpdate(Integer cid, Integer responseUpdate)

Description Answers an incoming call. Returns true if the method is successfully executed; false if an
error occurred. Note that if an OITF supports full-duplex voice only calls, then the underlying
signalling layer SHALL automatically refuse any update request to video. Requests an
update for the call session identified by the cid parameter.

Arguments cid Call session identifier for the application (Call ID).
responseUpdate Valid values are shown in the table below.

Value Description
0 UPDATE_ACCEPT: Accepts the update request
1 UPDATE_REFUSE: Refuses the update request
2 UPDATE_TIMEOUT: Refuses the update request due
to no answer from user

7.8.11 The Devicelnfo class

Represents a device installed on or connected to the OITF. A device can be for example a capture device, a rendering
device etc.

7.8.11.1 Properties

readonly Integer id

A unique, implementation dependent identifier for the capture device defined by the local system. The
system SHALL guarantee that the id assigned to a device will not change during the life of the application

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 150 (415)

readonly Integer deviceType

The type of device, valid values are:

Value Description
0 Audio Capture devices
1 Video Capture devices (*)

(*) Parameters and values not supported for voice only telephony services

readonly String deviceName

The friendly name for the capture device. May be used in user messages.

readonly String deviceProductName

The complete name, model number etc. for the capture device.

7.8.12 The DevicelnfoCollection class

typedef Collection<Devicelnfo> DevicelnfoCollection

The DevicelnfoCollection class represents a collection of Device Info objects. See Annex K for the definition of
the collection template.

7.8.13 The CodeclInfo class
7.8.13.1 Properties

readonly String codecName

The codec name.

readonly String mimeType

The codec mime-type. A list of possible codec mime-types for multimedia telephony supported by the OIPF
Solution are listed in Table 6 of [OIPF_MEDIAZ2].

readonly String profile

The codec profile. Normative definition of a subset of standard codec functionalities. The codec profiles for
multimedia telephony supported by the OIPF Solution are listed in section 5.1.3 of [OIPF_MEDIAZ2].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 151 (415)

7.8.14 The CodeclInfoCollection class

typedef Collection<Codeclnfo> CodeclnfoCollection

The CodeclInfoCol lection class represents a collection of CodecInfo objects. See Annex K for the definition of
the collection template.

In addition to the methods and properties defined for generic collections, the CodecInfoCol lection class supports
the additional properties and methods defined below.

7.8.14.1 Methods

Boolean moveAt(Integer targetlndex, Integer index)

Description Moves a CodecInfo item from the specified index to the specified targetindex. The
operation is performed through an item removal and an insertion of the same item in a new
position. The targetlndex is the position in which the element SHALL be inserted
considering position indexes before item removal. During removal and insertion, the other
items will shift accordingly. This method SHALL return true if the operation succeeded, or
false if an invalid index was specified (e.g. index > length).

Arguments targetindex The index in the list to which the item should be moved.

index The index in the list of the item that will be moved.

Boolean remove(Integer index)

Description Removes the item at the specified index from the CodecInfoCol lection. The other items
SHALL shift accordingly. Returns true if the operation succeeded, or false if an invalid
index was specified.

Arguments index The index of the item to be removed.

7.9 Parental rating and parental control APIs

This section defines APIs related to parental ratings and parental control.

Sections 7.9.1 through 7.9.3 define a new JavaScript embedded object
“application/oipfParentalControlManager” and the related ParentalRatingScheme and
ParentalRatingSchemeCol lection objects, which allows applications to construct a new parental rating scheme
(and a parental rating value using that scheme), and to temporarily enable or disable viewing of a content item. These
APIs SHALL be supported if an OITF supports parental controls as indicated by value “true” for element
<parentalcontrol> (as defined by section 9.3.5) in its capability profile.

Sections 7.9.4 and 7.9.5 define the ParentalRating and ParentalRatingCol lection objects. These objects are
used/referenced by various other objects, such as the Programme object as defined in section 7.16.2 to indicate a
particular parental rating. The support for these objects depends on the support for the sections in which these are used.

7.9.1 The application/oipfParentalControlManager embedded object

If an OITF supports parental controls as indicated by value “true” for element <parentalcontrol> (as defined by
section 9.3.5) in its capability profile, the OITF SHALL support the
application/oipfParentalControlManager object with the following interface.

The following example shows a possible usage scenario for the application/oipfParentalControlManager,
i.e. to add a new parental rating scheme to the parentalRatingSchemes collection:

//get a reference to the parental control manager object
var pcManager = document.getElementByld(*'pcmanager™);

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 152 (415)

// add a new rating scheme — in this case, the MPAA rating scheme
pcManager .parentalRatingSchemes.addParentalRatingScheme(
"'urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:-2001", "G,PG,PG-13,R,NC-17,NR");

The following example shows a possible usage scenario for the application/oipfParentalControlManager,
i.e. to temporarily unblock a blocked content item (e.g. after asking the user to enter the parental control pin):

// 1T a content item is blocked, the event “onParentalRatingChange” can be captured, and
// the setParentalControlStatus() method can be used to temporarily unblock the content
// (e.g. after asking the user to enter the parental control pin)

function askForPin(Q) { .. }

//get a reference to the A/V player object
var avPlayer = document.getElementByld(*'avPlayer');

avPlayer.onParentalRatingChange = function() {
var pin=askForPin() ;pcManager.setParentalControlStatus(pin, false)};

7.9.1.1

Properties

readonly ParentalRatingSchemeCollection parentalRatingSchemes

A reference to the collection of rating schemes known by the OITF.

readonly Boolean isPINEntryLocked

The lockout status of the parental control PIN. If the incorrect PIN has been entered too many times in the
configured timeout period, parental control PIN entry SHALL be locked out for a period of time determined by

the OITF.

7.9.1.2

Methods

Integer setParentalControlStatus(String pcPIN, Boolean enable)

Description

As defined in [OIPF_CSP2], the OITF shall prevent the consumption of a programme when
its parental rating doesn't meet the parental rating criterion currently defined in the OITF.
Calling this method with enable set to false will temporarily allow the consumption of any
blocked programme.

Setting the parental control status using this method SHALL set the status until the
consumption of any of all the blocked programmes terminates (e.g. until the content item
being played is changed), or another call to the setParentalControlStatus() method is
made.

Setting the parental control status using this method has the following effect; for the
Programme and Channel objects as defined in sections 7.16.2 and 7.13.11, the blocked
property of a programme or channel SHALL be set to true for programmes whose parental
rating does not meet the applicable parental rating criterion, but the locked property
SHALL be set to false.

This operation to temporarily disable parental rating control SHALL be protected by the
parental control PIN (i.e. through the pcPIN argument). The return value indicates the
success of the operation, and SHALL take one of the following values:

Value Description

0 The PIN is correct.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 153 (415)

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too many
times. The number of invalid PIN attempts before PIN entry is locked is
outside the scope of this specification.

Arguments pcPIN The parental control PIN.
enable Flag indicating whether parental control should be enabled.

Boolean getParentalControlStatus()

Description

Returns a flag indicating the temporary parental control status set by
setParentalControlStatus(). Note that the returned status covers parental control
functionality related to all rating schemes, not only the rating scheme upon which the
method is called.

Boolean getBlockUnrated()

Description

Returns a flag indicating whether or not the OITF has been configured by the user to block
content for which a parental rating is absent.

Integer setParentalControlPIN(String oldPcPIN, String newPcPIN)

Description

Set the parental control PIN.

This operation SHALL be protected by the parental control PIN (if PIN entry is enabled).
The return value indicates the success of the operation, and SHALL take one of the
following values:

Value

Description

The PIN is correct.

The PIN is incorrect.

PIN entry is locked because an invalid PIN has been entered too many times.
The number of invalid PIN attempts before PIN entry is locked is outside the
scope of this specification.

Arguments

oldPcPIN

The current parental control PIN.

newPcPIN

The new value for the parental control PIN.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 154 (415)

Integer unlockWithParentalControlPIN(String pcPIN, Object target)

Description Unlock the object specified by target for viewing if pcPIN contains the correct parental
control PIN.
The object type of target can be one of the following:
e video/broadcast object, in which case the content being presented through this
object SHALL be unlocked until a new channel is selected.
e AJ/V Control object, in which case the content being presented through this object
SHALL be unlocked until a new item of content is played using this object
Otherwise an Invalid Object error SHALL be returned.
The return value indicates the success of the operation, and SHALL take the following
values:
Value Description
0 The PIN is correct.
1 The PIN is incorrect.
2 PIN entry is locked because an invalid PIN has been entered too
many times. The number of invalid PIN attempts before PIN entry is
locked is outside the scope of this specification.
3 Invalid object.
Arguments pcPIN The parental control PIN.
target The object to be unlocked..

Integer verifyParentalControlPIN(String pcPIN)

Description Verify that the PIN specified by pcPIN is the correct parental control PIN.
This method will return one of the following values:
Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too
many times. The number of invalid PIN attempts before PIN entry is
locked is outside the scope of this specification.

Arguments pcPIN The parental control PIN to be verified.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 155 (415)

Integer setBlockUnrated(String pcPIN, Boolean block)

Description Set whether programmes for which no parental rating has been retrieved from the metadata
client nor defined by the service provider should be blocked automatically by the terminal.

This operation SHALL be protected by the parental control PIN (if PIN entry is enabled).
The return value indicates the success of the operation, and SHALL take one of the
following values:

Value Description
0 The PIN is correct.
1 The PIN is incorrect.
2 PIN entry is locked because an invalid PIN has been entered too
many times. The number of invalid PIN attempts before PIN entry is
locked is outside the scope of this specification.

Arguments pcPIN The parental control PIN.

block Flag indicating whether programmes SHALL be blocked.

7.9.2 The ParentalRatingScheme class

typedef Collection<String> ParentalRatingScheme

A ParentalRatingScheme describes a single parental rating scheme that may be in use for rating content, e.g. the
MPAA or BBFC rating schemes. It is a collection of strings representing rating values, which next to the properties and
methods defined below SHALL support the array notation to access the rating values in this collection. For the natively
OITF supported parental rating systems the values SHALL be ordered by the OITF to allow the rating values to be
compared in the manner as defined for property threshold for the respective parental rating system. Using a threshold
as defined in this APl may not necessarily be the proper way in which parental rating filtering is applied on the OITF,
e.g. the US FCC requirements take precedence for device to be imported to the US.

The parental rating schemes supported by a receiver MAY vary between deployments.

See Annex K for the definition of the collection template. In addition to the methods and properties defined for generic
collections, the ParentalRatingScheme class supports the additional properties and methods defined below.

7.9.2.1 Properties

readonly String name

The unique name that identifies the parental rating scheme. Valid strings include:

e the URI of one of the MPEG-7 classification schemes representing a parental rating scheme as

defined by the “uri” attribute of one of the parental rating <ClassificationScheme> elements in
[MPEG-7].

e the string value “urn:oipf:GermanyFSKCS” to represent the GermanyFSK rating scheme as
defined in [OIPF_METAZ].

e the string value “dvb-si”: this means that the scheme of a minimum recommended age encoded as
per ratings 0x01 to OxOf in the parental rating descriptor from [EN 300 468], is used to represent the
parental rating values.

NOTE: If the broadcaster defined range from 0x10 to Oxff is used then that would be a different parental
rating scheme and not "dvb-si".

If the value of “name” is “dvb-si”, the ParentalRatingScheme remains empty (i.e.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 156 (415)

ParentalRatingScheme.length == 0).

readonly ParentalRating threshold

The parental rating threshold that is currently in use by the OITF’s parental control system for this rating
scheme, which is encoded as a ParentalRating object in the following manner:

If the value of the “name” property of the ParentalRatingScheme object is unequal to “dvb-si”, then:

o the “value” property of the threshold object represents the value for which items with a
ParentalRating.value greater or equal to the “value” property of the threshold object have been
configured by the OITF’s parental control subsystem to be blocked.

o the “labels” property of the threshold object represents the bit map of zero or more flags for which
items with a ParentalRating.- labels property with any of the same flags set have been
configured by the OITF’s parental control subsystem to be blocked.

If the value of the name property of the ParentalRatingScheme object is “dvb-si”, the threshold indicates
a minimum recommended age encoded as per [EN 300 468] at which or above which the content is being
blocked by the OITF’s parental control subsystem

Note that the value property as an index into the ParentalRating object that defines the threshold can be
1 larger than the value of ParentalRatingScheme. length to convey that no content is being blocked by
the parental control subsystem.

7.9.2.2 Methods

Integer indexOf(String ratingValue)

Description Return the index of the rating represented by attribute ratingValue inside the parental
rating scheme string collection, or -1 if the rating value cannot be found in the collection.

Arguments ratingValue The string representation of a parental rating value. See property name
in section 7.9.1.1 for more information about possible values. Values are
not case sensitive.

String iconUri(Integer index)

Description Return the URI of the icon representing the rating at index in the rating scheme, or
undefined if no item is present at that position. If no icon is available, this method SHALL
return nul .

Arguments index The index of the parental rating scheme.

7.9.3 The ParentalRatingSchemeCollection class

typedef Collection<ParentalRatingScheme> ParentalRatingSchemeCollection

A ParentalRatingSchemeCol lection represents a collection of parental rating schemes, e.g. as returned by property
parentalRatingSchemes of the “application/oipfParentalControlManager” object as defined in section
7.9.1. Next to the properties and methods defined below a ParentalRatingSchemeCol lection object SHALL
support the array notation to access the parental rating scheme objects in this collection.

See Annex K for the definition of the collection template. In addition to the methods and properties defined for generic
collections, the ParentalRatingSchemeCol lection class supports the additional properties and methods defined
below.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 157 (415)

7.9.3.1

Methods

ParentalRatingScheme addParentalRatingScheme(String name, String values)

Description

Create a new ParentalRatingScheme object and adds it to the
ParentalRatingSchemeCollection. Applications MAY use this method to register
additional parental rating schemes with the platform. When registered, the new parental
rating scheme SHALL (temporarily) be accessible through the parentalRatingSchemes
property of the “application/oipfParentalControlmanager” object as defined in
section 7.9.1.

The application SHALL make sure that the values are ordered in such a way to allow the
rating values to be compared in the manner as defined for the threshold property for the
respective parental rating system.

This method returns a reference to the ParentalRatingScheme object representing the
added scheme. If the value of the name parameter corresponds to an already-registered
rating scheme, this method returns a reference to the existing ParentalRatingScheme
object. If the newly defined rating scheme was not known to the OITF, the scheme MAY
be stored persistently, and the OITF may offer a Ul to set the parental rating blocking
criteria for the newly added parental rating scheme.

If the OITF has successfully stored (persistently or not persistently) the additional parental
rating scheme, the method SHALL return a non-nul I ParentalRatingScheme object.

Arguments

name A unique string identifying the parental rating scheme to which this
value refers. See property name in section 7.9.1.1 for more information
about possible values.

values A comma-separated list of the possible values in the rating scheme, in
ascending order of severity. In case the rating scheme is one of the
[MPEG-7] rating classification schemes, this means that the list of
parental rating values contains the values as specified by the <Name>
elements of the <Term> elements in the order of appearance as they
are defined for the classification scheme, with the exception of the
Internet Content Rating Association (ICRA) based ratings, for which
the reverse order has to be applied. The values must be ordered in
such a way to allow the rating values to be compared in the manner
as defined for property threshold for the respective parental rating
system.

ParentalRatingScheme getParentalRatingScheme(String name)

Description This method returns a reference to the ParentalRatingScheme object that is associated
with the given scheme as specified through parameter “name”. If the value of name does
not correspond to the name property of any of the ParentalRatingScheme objects in the
ParentalRatingSchemeCollection, the method SHALL return undefined.

Arguments name The unique name identifying a parental rating scheme.

7.9.4 The ParentalRating class

A ParentalRating object describes a parental rating value for a programme or channel. The ParentalRating
object identifies both the rating scheme in use, and the parental rating value within that scheme.

In case of a BCG the values of the properties in this object will be read from the ParentalGuidance element that is
the child of a programme’s BCG description.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 158 (415)

Example usage:

<I-- This example shows a possible usage scenario for the ParentalRating
data structure, i.e. to create a new programme to record and set
parental rating to MPAA parental rating to PG-13.

-——>

éééript type=""text/javascript" language="Javascriptl.5">

// get a reference to the recorder object
var recorder = document.getElementByld(*'recorder');

// create new programme to record
var myProgramme = recorder.createProgrammeObject();

// add a new parental rating value to myProgramme, in this case the
// programme is rated PG-13 for the US using the MPAA Parental rating scheme.
myProgramme.parentalRatings.addParentalRating(
"‘urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001", "PG-13", 2, 0, "US"
)
</script>

éébject id=""recorder" type="application/oipfRecordingScheduler'/>

7.9.4.1 Properties

readonly String name

The string representation of the parental rating value for the respective rating scheme denoted by property
scheme.

Valid strings include:

if the value of property scheme represents one of the parental rating classification scheme names
identified by [MPEG-7]: the string representation of one of the parental rating values as defined by
one of the <Name> elements.

if the value of property scheme is "urn:oipf:GermanyFSKCS” , the string representation of one the
values for the GermanyFSK rating scheme as defined in [OIPF_METAZ2].

if the value of property scheme is equal to “dvb-si”, this means that the scheme of a minimum
recommended age encoded as per ratings 0x01 to 0xOf in the parental rating descriptor from [EN
300 468], which corresponds to rating_type 0 in [IEC62455].

NOTE: If the broadcaster defined range from 0x10 to Oxff is used then that would be a different parental
rating scheme and not "dvb-si".

An example of a valid parental rating value is “PG-13".

readonly String scheme

Unique name identifying the parental rating guidance scheme to which this parental rating value refers. Valid
strings include:

the URI of one of the MPEG-7 classification schemes representing a parental rating scheme as
defined by the “uri” attribute of one of the parental rating <ClassificationScheme> elements in
[MPEG-7].

the string value “urn:oipf:GermanyFSKCS” to represent the GermanyFSK rating scheme as
defined in [OIPF_METAZ].

the string value “dvb-si”: this means that the scheme of a minimum recommended age encoded as
per [EN 300 468], is used to represent the parental rating values.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 159 (415)

readonly Integer value

The parental rating value represented as an index into the set of values defined as part of the
ParentalRatingScheme identified through property “scheme”.

If an associated ParentalRatingScheme object can be found by calling method
getParentalRatingScheme() on property parentalRatingSchemes of the
application/oipfParentalControlManager object and the value of property scheme is not equal to
“dvb-si”, then the value property SHALL represent the index of the parental rating value inside the
ParentalRatingScheme object, or -1 if the value cannot be found. If the value of property scheme is equal
to “dvb-si”, then this property SHALL be the integer representation of the string value of ParentalRating
property name.

If no associated ParentalRatingScheme object can be found by calling method
getParentalRatingScheme on property parentalRatingSchemes of the
application/oipfParentalControlManager object, then the value property SHALL have value
undefined.

readonly Integer labels

The labels property represents a set of parental advisory flags that may provide additional information about
the rating.

The value of this field is a 32 bit integer value that represents a binary mask corresponding to the sum of
zero or more label values defined in the table below. If no labels have been explicitly set, the value for the
“labels” property SHALL be 0.

Valid labels include:

Value Description
1 Indicates that a content item features sexual suggestive dialog.
2 Indicates that a content item features strong language.
4 Indicates that a content item features sexual situations.
8 Indicates that a content item features violence.
16 Indicates that a content item features fantasy violence.
32 Indicates that a content item features disturbing scenes.
64 Indicates that a content item features portrayals of discrimination.
128 Indicates that a content item features scenes of illegal drug use.
256 Indicates that a content item features strobing that could impact viewers suffering
from Photosensitive epilepsy

readonly String region

The region to which the parental rating value applies as an alpha-2 region code as defined in ISO 3166-1.
Returns undefined if no specific region has been defined.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 160 (415)

7.9.5 The ParentalRatingCollection class

typedef Collection<ParentalRating> ParentalRatingCollection

A ParentalRatingCol lection represents a collection of parental rating values. See Annex K for the definition of
the collection template.

In addition to the methods and properties defined for generic collections, the ParentalRatingCol lection class
supports the additional properties and methods defined below.

7.95.1 Methods

void addParentalRating(String scheme, String name, Integer value,
Integer labels, String region)

Description Creates a ParentalRating object instance for a given parental rating scheme and
parental rating value, and adds it to the ParentalRatingCol lection for a programme or
channel.

Arguments scheme A unique string identifying the parental rating scheme to which this value

refers. See property scheme in section 7.9.4.1 for more information about
possible values.

name A string representation of the parental rating value. See property name in
section 7.9.4.1 for more information about possible values. Values are not
case sensitive.

value The parental rating value represented as an Integer. See property value in
section 7.9.4.1 for more information about possible values.

labels A set of content rating labels that may provide additional information about
the rating. See property labels in section 7.9.4.1 for more information about
possible values.

region The region to which the parental rating value applies as an alpha-2 region
code as defined in ISO 3166-1. The value of this argument must be null or
undefined if no specific region has been identified. Values are not case
sensitive.

7.10 Scheduled Recording APIs

This section describes the APIs needed to support control by a DAE application of the recording (PVR) functionality
available to an OITF, including time-shift support, scheduled recording and storage of basic metadata about recorded
items. Changes made by a DAE application to properties that can also be set by the OITF may be overwritten by the

OITF from metadata without warning.

This section SHALL apply for OITFs that have indicated <recording> with value “true” as defined in section
9.3.3 in its capability description.

7.10.1 The application/oipfRecordingScheduler embedded object

The OITF SHALL support the scheduling of recordings of broadcasts through the use of the following non-visual
embedded object:

<object type="application/oipfRecordingScheduler"/>
Note that the functionality in this section SHALL adhere to the security model as specified in section 10.1.

Which channels can be recorded SHALL be indicated by the ipBroadcast, DASH and HAS attributes in the PVR
capability indication (see section 9.3.3). Within the channels indicated by these attributes, recording of both channels
stored in the channel list and locally defined channels SHALL be supported.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 161 (415)

7.10.1.1 Methods

ScheduledRecording record(Programme programme)

Description

Requests the scheduler to schedule the recording of the programme identified by the
programme 1D property of the programme.

If the programme IDType of the programme has the value ID_TVA_GROUP_CRID then the
ScheduledRecording object returned by this method SHALL be a “parent” scheduled
recording object that conceptually represents the recording. Each individual programme in
the SHALL be represented by a separate ScheduledRecording object. Note that
ScheduledRecording objects for individual programmes may not be created until the CRID
has been partially or completely resolved. The start time, duration and other properties of the
programme SHALL NOT be used for scheduling any recording.

Individual programmes SHALL be recorded if any entries in a programme’s associated
groupCRIDs collection matches the group CRID specified in the programmelD property of
any “parent” recording.

The other data contained in the programme object is used solely for annotation of the
(scheduled) recording. If such programme metadata is provided, it SHALL be retained in the
ScheduledRecording object that is returned if the recording of the programme was
scheduled successfully, reflecting the possibility that not all relevant metadata might be
available to the scheduler. When the programme is recorded, the metadata in the associated
Recording object SHALL be updated with the metadata from the broadcast stream if such
metadata is available. If the recording could not be scheduled due to a scheduling conflict or
lack of resources the value null is returned.

Note that the actual implementation of this method should enable the scheduler to identify
the domain of the service that issues the scheduling request in order to support future
retrieval of the scheduled recording through the getScheduledRecordings method.

Arguments

programme The programme to be recorded, as defined in section 7.16.2.

ScheduledRecording recordAt(Integer startTime, Integer duration,

Integer repeatDays, String channellD)

Description

Requests the scheduler to schedule the recording of the broadcast to be received over the
channel identified by channel 1D, starting at startTime and stopping at startTime +
duration. If the recording was scheduled successfully, the resulting ScheduledRecording
object is returned. If the recording could not be scheduled due to a scheduling conflict or lack
of resources the value null is returned.

The OITF SHOULD associate metadata with recordings scheduled using this method. This
metadata MAY be obtained from the broadcast being recorded (for example DVB-SI in an
MPEG-2 transport stream) or from other sources of metadata. If an application anticipates
that the OITF may not be able to obtain any metadata, it SHOULD instead of using this
method,;

e create a Programme object (using the createProgramme() method) containing the
channellD, startTime and duration

e populate that Programme object with metadata
e pass that Programme object to the record(Programme) method.

Note that the actual implementation of this method should enable the scheduler to identify
the domain of the service that issues the scheduling request in order to support future
retrieval of the scheduled recording through the getScheduledRecordings() method.

Arguments

startTime The start of the time period of the recording measured in seconds since
midnight (GMT) on 1/1/1970. If the start time occurs in the past and the
current time is within the specified duration of the recording, the OITF

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 162 (415)

SHALL start recording immediately and MAY record any earlier content from
the current programme that is available (e.g. stored in a time-shift buffer).

duration The duration of the recording in seconds.
repeatDays Bitfield indicating which days of the week the recording SHOULD be
repeated. Values are as follows:
Day Bitfield Value
Sunday 0x01 (i.e. 00000001)
Monday 0x02 (i.e. 00000010)
Tuesday 0x04 (i.e. 00000100)
Wednesday 0x08 (i.e. 00001000)
Thursday 0x10 (i.e. 00010000)
Friday 0x20 (i.e. 00100000)
Saturday 0x40 (i.e. 01000000)
These bitfield values can be ‘OR’-ed together to repeat a recording on more
than one day of a week (e.g. weekdays)
A value of 0x00 indicates that the recording will not be repeated.
channellD The identifier of the channel from which the broadcasted content is to be

recorded. Specifies either a ccid or ipBroadcastID (as defined by the
Channel object in section 7.13.11)

ScheduledRecordingCollection getScheduledRecordings()

Description

Returns a subset of all the recordings that are scheduled but which have not yet started. The
subset SHALL include only scheduled recordings that were scheduled using a service from
the same FQDN as the domain of the service that calls the method.

ChannelConfig getChannelConfig()

Description

Returns the channel line-up of the OITF in the form of a ChannelConfig object as defined
in section 7.13.9. The ChannelConfig object returned from this function SHALL be identical
to the ChannelConfig object returned from the getChannelConfig() method on the
video/broadcast object as defined in section 7.13.1.3.

void remove(ScheduledRecording recording)

Description

Remove a recording (either scheduled, in-progress or completed).

For non-privileged applications, recordings SHALL only be removed when they are
scheduled but not yet started and the recording was scheduled by the current service.

As with the record() method, only the programme ID property of the scheduled recording

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 163 (415)

SHALL be used to identify the scheduled recording to remove where this property is
available. The other data contained in the scheduled recording SHALL NOT be used when
removing a recording scheduled using methods other than recordAt(). For recordings
scheduled using recordAt(), the data used to identify the recording to remove is
implementation dependent.

If the programme IDType property has the value ID_TVA GROUP_CRID then the OITF
SHALL cancel the recording of the specified group.

If an A/V Control object is presenting the indicated recording then the state of the A/V
Control object SHALL be automatically changed to 6 (the error state).

Arguments recording The scheduled recording to be removed.

Programme createProgrammeObject()

Description Factory method to create an instance of Programme.

7.10.2 The ScheduledRecording class

The ScheduledRecording object represents a scheduled programme in the system, i.e. a recording that is scheduled
but which has not yet started. For group recordings (e.g. recording an entire series), a ScheduledRecording object is
also used to represent a “parent” recording that enables management of the group recording without representing any of
the actual recordings in the group. The values of the properties of a ScheduledRecording (except for
startPadding and endPadding) are provided when the object is created using one of the record() methods in
section 7.10.1, for example by using a corresponding Programme object as argument for the record() method, and
can not be changed for this scheduled recording object (except for startPadding and endPadding).

7.10.2.1 Constants

The following table lists the constants for recording states.

Name Use
RECORDING_SCHEDULED Recording has been newly scheduled.
RECORDING_REC_STARTED Recording has started.
RECORDING_REC_COMPLETED Recording has successfully completed.

RECORDING_REC_PARTIALLY_COMPLETED The recording has only partially completed due to
insufficient storage space, a clash or hardware failure.

There are three possible conditions for this:
1) The end of the recording is missed.
2) The start of the recording is missed.

3) A piece from the centre of the recording is missed
(e.g. due to the receiver rebooting or a transient failure
of the network connection).

RECORDING_ERROR An error has been encountered. Refer to detailed error
codes for details on the error.

This specification does not define values for these constants. Implementations may use any values as long as the value of
each constant is unique.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 164 (415)

The following table lists the constants for detailed error codes when a recording failed to complete.

Name Use

ERROR_REC_RESOURCE_L IMITATION The recording sub -system is unable to record due to
resource limitations.

ERROR_INSUFFICIENT_STORAGE There is insufficient storage space available. (Some of
the recording may be available).

ERROR_REC_UNKNOWN Recording has stopped before completion due to
unknown (probably hardware) failure.

This specification does not define values for these constants. Implementations may use any values as long as the value of
each constant is unique.

The following table lists the constants for programme ID types.

Name Value Use

ID_TVA_CRID 0 Used in the programme IDType property to indicate that the
programme is identified by its TV-Anytime CRID (Content
Reference Identifier).

1D_DVB_EVENT 1 Used in the programme IDType property to indicate that the
programme is identified by a DVB URL referencing a DVB-SI
event as enabled by section 4.1.3 of [OIPF_METAZ2]. Support for
this constant is OPTIONAL.

ID_TVA_GROUP_CRID 2 Used in the programme IDType property to indicate that the
Programme object represents a group of programmes identified
by a TV-Anytime group CRID.

7.10.2.2 Properties

readonly Integer state

The state of the recording. Valid values are:
RECORDING_REC_STARTED
RECORDING_REC_COMPLETED
RECORDING_REC_PARTIALLY_COMPLETED
RECORDING_SCHEDULED
RECORDING_ERROR

readonly Integer error

If the state of the recording has changed due to an error, this field contains an error code detailing the type of
error. This is only valid if the value of the state argument is RECORD ING_ERROR or
RECORDING_REC_PARTIALLY_COMPLETED otherwise this property SHALL be null. Valid values are:

ERROR_REC_RESOURCE_L IMITATION

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 165 (415)

ERROR_INSUFFICIENT_STORAGE
ERROR_REC_UNKNOWN

readonly String schedulelD

An identifier for this scheduled recording. This value SHALL be unique to this scheduled recording. For a
recording object this identifier can be used to associate which scheduled recording object this recording was
created from.

String customlD

An identifier for this scheduled recording. This value is an identifier that the DAE application can set in order
to keep track of scheduled recordings. It is not changed by the OITF.

Integer startPadding

The amount of padding to add at the start of a scheduled recording, in seconds. If the value of this property is
undefined, an OITF defined start padding will be used. The default OITF defined start padding MAY be
changed through property pvrStartPadding of the Configuration class as defined in section 7.3.2.
When a recording is due to start, the OITF MAY use a smaller amount of padding in order to avoid conflicts
with other recordings.

Positive values of this property SHALL cause the recording to start earlier than the specified start time (i.e.
the actual duration of the recording shall be increased); negative values SHALL cause the recording to start
later than the specified start time (i.e. the actual duration of the recording shall be decreased).

Integer endPadding

The amount of padding to add at the end of a scheduled recording, in seconds. If the value of this property is
undefined, an OITF defined end padding will be used. The default OITF defined end padding MAY be
changed through property pvrEndPadding of the Configuration class as defined in section 7.3.2. When a
recording is in progress, the OITF MAY use a smaller amount of padding in order to avoid conflicts with other
recordings.

Positive values of this property SHALL cause the recording to end later than the specified end time (i.e. the
actual duration of the recording shall be increased); negative values SHALL cause the recording to end
earlier than the specified end time (i.e. the actual duration of the recording shall be decreased).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 166 (415)

readonly Integer repeatDays

Bitfield indicating which days of the week the recording SHOULD be repeated. Values are as follows:

Day Bitfield Value
Sunday 0x01 (i.e. 00000001)
Monday 0x02 (i.e. 00000010)
Tuesday 0x04 (i.e. 00000100)
Wednesday 0x08 (i.e. 00001000)
Thursday 0x10 (i.e. 00010000)
Friday 0x20 (i.e. 00100000)
Saturday 0x40 (i.e. 01000000)

These bitfield values can be arithmetically summed to repeat a recording on more than one day of a week
(e.g. weekdays)

A value of 0x00 indicates that the recording will not be repeated.

String name

The short name of the scheduled recording, e.g. 'Star Trek: DS9'.

String longName

The long name of the scheduled recording, e.g. 'Star Trek: Deep Space Nine'. If the long hame is not
available, this property will be undefined.

String description

The description of the scheduled recording, e.g. an episode synopsis. If no description is available, this
property will be undefined.

String longDescription

The long description of the programme. If no description is available, this property will be undefined.

readonly Integer startTime

The start time of the scheduled recording, measured in seconds since midnight (GMT) on 1/1/1970. The
value for the startPadding property can be used to indicate if the recording has to be started before the
startTime (as defined by the Programme class).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 167 (415)

readonly Integer duration

The duration of the scheduled recording (in seconds). The value for the endPadding property can be used to
indicate how long the recording has to be continued after the specified duration of the recording.

readonly Channel channel

Reference to the broadcast channel where the scheduled programme is available.

readonly Boolean isManual

true if the recording was scheduled using oipfRecordingScheduler.recordAt() or using a terminal-
specific approach that does not use guide data to determine what to record, false otherwise.

If false, then any fields whose name matches a field in the Programme object contains details from the
programme guide on the programme that has been recorded. If true, only the channel, startTime and
duration properties are required to be valid.

readonly String programmelD

The unique identifier of the scheduled programme or series, e.g. a TV-Anytime CRID (Content Reference
Identifier). For recordings scheduled using the oipfRecordingScheduler.recordAt() method, the value
of this property MAY be undefined.

readonly Integer programmelDType

The type of identification used to reference the programme, as indicated by one of the ID_* constants
defined in section 7.10.2.1. For recordings scheduled using the oipfRecordingScheduler.recordAt()
method, the value of this property MAY be undefined.

readonly Integer episode

The episode number for the programme if it is part of a series. This property is undefined when the
programme is not part of a series or the information is not available.

readonly Integer totalEpisodes

If the programme is part of a series, the total number of episodes in the series. This property is undefined
when the programme is not part of a series or the information is not available.

readonly ParentalRatingCollection parentalRatings

A collection of parental rating values for the programme for zero or more parental rating schemes supported
by the OITF. The value of this property is typically provided by a corresponding “Programme” object that is
used to schedule the recording and can not be changed for this scheduled recording object. If no parental

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 168 (415)

rating information is available for this scheduled recording, this property is a ParentalRatingCol lection
object (as defined in section 7.9.5) with length 0.

Note that if the parentalRating property contains a certain parental rating (e.g. PG-13) and the broadcast
channel associated with this scheduled recording has metadata that says that the content is rated PG-16,
then the conflict resolution is implementation dependent.

Note that this property was formerly called “parentalRating” (singular not plural).

String customMetadata

Application-specific information for this recording. This value is information that the DAE application can set
in order to retain additional information on this scheduled recording. It is not changed by the OITF.

The OITF SHALL support values up to and including 16 K Bytes in size. Strings longer than this MAY get
truncated.

7.10.3 The ScheduledRecordingCollection class

typedef Collection<ScheduledRecording> ScheduledRecordingCollection

The ScheduledRecordingCol lection class represents a collection of ScheduledRecording objects. See
Annex K for the definition of the collection template.

7.10.4 Extension to application/oipfRecordingScheduler for control of
recordings

The OITF SHALL support the following extensions to the application/oipfRecordingScheduler object
defined in section 7.10.1.

This subsection SHALL apply for OITFs that have indicated support for the extended PVR management functionality by
adding the attribute "manageRecordings = true'to the <recording> element in the client capability description
as defined in section 9.3.3.

The functionality as described in this section is subject to the security model of section 10.

7.10.4.1 Properties

readonly ScheduledRecordingCollection recordings

Provides a list of scheduled and recorded programmes in the system. This property may only provide access
to a subset of the full list of recordings, as determined by the value of the manageRecordings attribute of
the <recording> element in the client capability description (see section 9.3.3).

readonly Disclnfo disclnfo

Get information about the status of the local storage device. The Disclnfo class is defined in section 7.16.4.

function onPVREvent(Integer state, ScheduledRecording recording)

This function is the DOM 0 event handler for notification of changes in the state of recordings. The specified
function is called with the following arguments:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 169 (415)

e Integer state - The current state of the recording. One of:

Value Description

1 The recording has started.

2 The recording has stopped, having completed.

3 The recording sub-system is unable to record due to resource limitations.

4 There is insufficient storage space available. (Some of the recording may be available).

6 The recording has stopped before completion due to unknown (probably hardware) failure.

7 The recording has been newly scheduled.

8 The recording has been deleted (for complete or in-progress recordings) or removed from
the schedule (for scheduled recordings).

9 The recording is due to start in a short time.

10 The recording has been updated. For performance reasons, OITFs SHOULD NOT dispatch
events with the state when only the duration of an in-progress recording has changed.

e ScheduledRecording recording — The recording to which this event refers.

7.10.4.2 Methods

Recording getRecording(String id)

Description Returns the Recording object for which the value of the Recording. id property
corresponds to the given id parameter. If such a Recording does not exist, the method
returns nul .

Arguments id Identifier corresponding to the id property of a Recording object.

void stop(Recording recording)

Description Stop an in-progress recording. The recording SHALL NOT be deleted.

Arguments recording The recording to be stopped.

void refresh()

Description Update the recordings property to show the current status of all recordings.

Boolean update(String id, Integer startTime, Integer duration, Integer repeatDays)

Description Requests the scheduler to update a scheduled or ongoing recording.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 170 (415)

For scheduled recordings the properties startTime, duration and repeatDays can be
modified.

For ongoing recordings only the duration property may be modified.

This method SHALL return true if the operation succeeded, or false if for any reason it
rescheduling is not possible (e.g. the updated recording overlaps with another scheduled
recording and there are insufficient system resources to do both.).

If the method returns false then no changes SHALL be made to the recording.

Arguments id The id of the recording to update
startTime The new start time of the recording, or undefined if the start time is not to
be updated.
duration The new duration of the recording, or undefined if the duration is not to
be updated.
repeatDays The new set of days on which the recording is to be repeated, or
undefined if this is not to be updated.

7.10.4.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onPVREvent PVREvent Bubbles: No

Cancellable: No

Context Info: state, recording

Note: the DOM events are directly dispatched to the event target, and will not bubble nor capture. Remote Uls SHOULD
NOT rely on receiving these events during the bubbling or the capturing phase. Remote Uls that use DOM event handlers
SHALL call the addEventListener() method onthe application/oipfScheduledRecording object itself.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.10.5 The Recording class

The Recording class represents an in-progress or completed recording being made available through the extended
PVR management functionality as defined in section 7.10.4. Recordings for which no data has yet been recorded are
represented by the ScheduledRecording class.

This class implements the ScheduledRecording interface (see section 7.10.2) to provide access to the information
relating to the scheduling of the recording. The difference between scheduled recordings, in-progress recordings and
completed recordings is primarily what properties are populated with values. In addition, for recorded and in-progress
recordings the following is true:

= The startPadding property is read only.

= For in-progress recordings, changes to the value of the endPadding property SHALL modify the actual
duration of the recording. If the value of the endPadding property is changed so that the current actual
duration of the recording exceeds the new actual duration specified by the sum of the startPadding,
duration and endPadding properties, the recording SHALL be stopped immediately. Changing the value
of this property for a completed recording SHALL have no effect.

Recordings MAY be “manual” in that they simply record a channel at a certain time, for a period - analogous to a
traditional VCR - or alternatively recordings can be programme based.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 171 (415)

If an in-progress recording is interrupted and automatically resumed, e.g. due to a temporary power failure, all sections of
the recording SHALL be represented by a single Recording object.

Values of properties in the Recording object SHALL be obtained from metadata about the recorded programme and
are typically copied from the Programme used for scheduling a recording by the record(Programme programme)
method of the application/oipfRecordingScheduler object. See section 7.10.4 for more information about the
mapping between the properties of a Programme and the BCG metadata. In the event of a conflict between the metadata
in the Programme and that in the broadcast channel, the conflict resolution is implementation dependent.

NOTE: The property parentalRatings formerly defined as part of this class is now redundant following the
renaming of the parentalRating property in the ScheduledRecording class to parentalRatings.

7.10.5.1 Properties

NOTE: The properties state and isManual formerly defined in this class are now defined in the
ScheduledRecording class, and since the Recording class inherits from the ScheduledRecording class they
are still part of the Recording class.

readonly String uri

A uri identifying the content item in local storage according to [RFC3986]. The format of the URI is outside the
scope of this specification except that;

e the scheme SHALL NOT be one that is included in this specification
e the URI SHALL NOT include a fragment

readonly String id

An identifier for this recording. This value SHALL be unique to this recording and so can be used to compare
two recording objects to see if they refer to the same recording. The OITF SHALL guarantee that recording
identifiers are unique in relation to download identifiers and CODAsset identifiers.

Boolean doNotDelete

If true, then this recording should not be automatically deleted by the system.

Integer saveDays

The number of days for which an individual or manual recording SHOULD be saved. Recordings older than
this value MAY be deleted. If the value of this property is undefined, the default save duration SHALL be
used.

Integer saveEpisodes

The number of episodes of a series-link that SHOULD be saved. Older episodes MAY be deleted. This is
only valid when set on the latest scheduled recording in the series. If the value of this property is undefined,
the default value SHALL be used.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 172 (415)

readonly Boolean blocked

Flag indicating whether the programme is blocked due to parental control settings or conditional access
restrictions.

The blocked and locked properties work together to provide a tri-state flag describing the status of a
programme. This can best be described by the following table:

Description blocked locked
No parental control applies. false false
Item is above the parental rating threshold (or manually blocked); true true

no PIN has been entered to view it and so the item cannot
currently be viewed.

Item is above the parental rating threshold (or manually blocked); true false
the PIN has been entered and so the item can be viewed.

Invalid combination — OITFs SHALL NOT support this combination false true

readonly Integer showType

Flag indicating the type of show. This field SHALL take one of the following values:

Value Description
0 The show is live.
1 The show is a first-run show.
2 The show is a rerun.

readonly Boolean subtitles

Flag indicating whether subtitles or closed-caption information is available.

readonly StringCollection subtitleLanguages

Supported subtitle languages, indicated by their 1SO 639-2 language codes as defined in [ISO 639-2].

readonly Boolean isHD

Flag indicating whether the programme has high-definition video.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 173 (415)

readonly Boolean is3D

Flag indicating whether the programme has 3D video.

readonly Integer audioType

Bitfield indicating the type of audio that is available for the programme. Since more than one type of audio
may be available for a given programme, the value of this field SHALL consist of one or more of the following
values ORed together:

Value Description
1 Mono audio
2 Stereo audio
4 Multi-channel audio

readonly Boolean isMultilingual

Flag indicating whether more than one audio language is available for this recording.

readonly StringCollection audiolLanguages

Supported audio languages, indicated by their ISO 639-2 language codes as defined in [ISO 639-2].

readonly StringCollection genres

A collection of genres that describe this programme.

readonly Integer recordingStartTime

The actual start time of the recording, including any padding, measured in seconds since midnight (GMT) on
1/1/1970. This MAY not be the same as the scheduled start time of the recorded programme (e.g. due to a
recording starting late, or due to start/end padding). For recordings that have not yet started, the value of
this field SHALL be undefined.

readonly Integer recordingDuration

The actual duration of the recording, including any padding, measured in seconds. This MAY not be the
same as the scheduled duration of the recording (e.g. due to a recording finishing early, or due to start/end
padding). For recordings that have not yet started, the value of this field SHALL be undefined.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 174 (415)

readonly BookmarkCollection bookmarks

A collection of the bookmarks set in a recording. If no bookmarks are set, the collection SHALL be empty.

readonly Boolean locked

Flag indicating whether the current state of the parental control system prevents the recording from being
viewed (e.g. a correct parental control PIN has not been entered to allow the recording to be viewed).

7.10.6 The RecordingCollection class

This section is intentionally left empty.

7.10.7 The PVREvent class

This section is intentionally left empty.

7.10.8 The Bookmark class

The Bookmark class represents a bookmark or chapter mark in a recording or CoD asset. This is not a web bookmark —
instead, it is a point from which the viewer may want to resume playback of a piece of content. These MAY be set
implicitly without user intervention (e.g. at the point where a user stops watching a recording, in order to allow them to
resume from that point later) or explicitly by the user (e.g. at the start of a favourite scene).

7.10.8.1 Properties

readonly Integer time

The time at which the bookmark is set, in seconds from the start of the content item.

readonly String name

The name of the bookmark.

7.10.9 The BookmarkCollection class

typedef Collection<Bookmark> BookmarkCollection

A BookmarkCol lection is a collection of bookmarks, ordered by time. See Annex K for the definition of the
collection template. In addition to the methods and properties defined for generic collections, the
BookmarkCol lection class supports the additional properties and methods defined below.

NOTE: In principle bookmarks MAY be stored on in the network however the protocol for communicating bookmarks
between the OITF and the network is not defined in the present document.

7.10.9.1 Methods

Bookmark addBookmark(Integer time, String name)

Description Add a new bookmark to the collection. If the bookmark cannot be added (e.g. because the
value given for time lies outside the length of the recording), this method SHALL return
null.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 175 (415)

Arguments time The time at which the bookmark is set, in seconds since the start of the
recording.
name The name of the bookmark.

void removeBookmark(Bookmark bookmark)

Description Remove a bookmark from the collection.

Arguments bookmark The bookmark to be removed.

7.11 Remote Management APIs

This section defines interfaces to perform remote diagnostics and management of the device.

Browser based remote management SHALL be supported by OITFs that have indicated
<remote_diagnostics>true</remote_diagnostics> in their capability profile (as defined in section 9.3.12)

7.11.1 The application/oipfRemoteManagement embedded object
The appl ication/oipfRemoteManagement embedded object has the following properties and methods.

Access to the functionality of the appl ication/oipfRemoteManagement embedded object SHALL adhere to the
security requirements as defined in section 10.

7.11.1.1 Properties

readonly String vendorName

The value of this property SHALL be the same as the value of the LocalSystem.vendorName property (see
section 7.3.3.1)

readonly String modelName

The value of this property SHALL be the same as the value of the LocalSystem.mode IName property (see
section 7.3.3.1)

readonly String softwareVersion

The value of this property SHALL be the same as the value of the Local System.softwareVersion
property (see section 7.3.3.1)

readonly String hardwareVersion

The value of this property SHALL be the same as the value of the LocalSystem.hardwareVersion
property (see section 7.3.3.1)

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 176 (415)

readonly String familyName

The value of this property SHALL be the same as the value of the LocalSystem. fami lyName property (see
section 7.3.3.1)

function onSoftwareUpdate(String updateEvent, Integer seconds, String message,
String version)

The function that is called when the OITF'’s software update state is changed. The specified function is called
with the following arguments:

e String updateEvent — The event type that caused the invocation of this function. One of:

Value Description

SOFTWARE_AVAILABLE New software for the OITF has been found on a remote management
server. The message argument may contain a user-centric message

regarding this new software version and the version argument may

contain the version number of the software update.

SOFTWARE_DOWNLOAD ING New software for the OITF is in the process of being downloaded.
The version argument may contain the version number of the
software being downloaded. This event type may be signalled at
multiple times during the download of the new software, indicating
positive progress; in this case the message argument should contain
an indication of the download progress.

SOFTWARE_DOWNLOAD_FAILED | The download of new software has failed. A descriptive reason for the
failure may be found in the message argument and the version
argument may contain the version number of the software that failed
to be downloaded

SOFTWARE_DOWNLOADED A new software version of the OITF has been downloaded but has not
yet been installed. Applications can now save relevant data that
should survive a firmware upgrade. The actual mechanism of the
download is out of scope of this specification. The message argument
may contain a user-centric message regarding this new software
version. The seconds argument has no significance.

FORCED_UPDATE A new software version will shortly be installed. This event may occur
if the users has not agreed to install the software but the system must
have a new software version. The seconds argument gives the time
until the OITF will install the new software.

e Integer seconds — The time before action takes place. The meaning depends on the event type
as described above.

e String message — A message that may be used to inform the user about the purpose of this
update to the software in order to receive the users consent to perform the actual update.
undefined if not used.

e String version - The new version number of the software identified for the update, or undefined
if not available.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 177 (415)

7.11.1.2 Methods

String getParameter(String parameterName)

Description

Returns the requested parameter.

Arguments

parameterName “SAMPLE_PACKET_LO0SS": This queries the RTP packet loss since the
last call to this function, or the start of the current RTP content item,
whichever is more recent. The returned string is of the format “<time in
milliseconds since the last sample> <fraction lost> <number of packets
lost>". These fields (i.e. <xxx>) are defined as described in [RFC3550]
section 6.4.2 and are decimal numbers (encoded as strings). If no
content item is playing an empty string is returned.

“SAMPLE_DECODER_ERRORS”: This queries the decoder errors since the
last call to this function, or the start of the current RTP content item,
whichever is more recent. The returned string is of the format “<time in
milliseconds since the sample> <total number of frames decoded>
<total number of errors>". These fields are decimal numbers (encoded
as strings). If no content item is playing an empty string is returned.

“CUMULATIVE_PACKET_LOSS": This queries the RTP packet loss since
the start of the current RTP content item. The returned string is of the
format “<time in milliseconds of this sample within the content>
<fraction lost> <number of packets lost>". These fields (i.e. <xxx>) are
defined as described in [RFC3550] section 6.4.2 and are decimal
numbers (encoded as strings). If no content item is playing an empty
string is returned.

“CUMULATIVE_DECODER_ERRORS”: This queries the decoder errors
since the start of the current RTP content item, whichever is more
recent. The returned string is of the format “<time in milliseconds of this
sample within the content> <total number of frames decoded> <total
number of errors>". These fields are decimal numbers (encoded as
strings). If no content item is playing an empty string is returned.

Values are not case sensitive. Optionally, further vendor specific
parameters may be supported.

In the case that a parameter is requested that a device does not
support, it SHALL return an empty string.

Integer triggerSoftwareUpdate(String token)

Description

Triggers an OITF to start its software update process. The process itself and any user
involvement (e.g. to confirm agreement for a software update) is not defined. The method is
blocking. The process of updating the software MAY generate SoftwareUpdate events to
indicate progress.

The returned integer is a result code that can take the following values:

Result Description Semantics
message
0 Successful The request is successful and the device software

will be updated.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 178 (415)

1 Unknown error triggerSoftwareUpdate() failed because an
unspecified error occurred.
2 Invalid token triggerSoftwareUpdate() failed because the
token is not valid.
3 No update triggerSoftwareUpdate() failed, because no
available update exists.

Arguments

token

An optional token string used to assist in the software update process.
The token may be used to transfer credentials information to control
the software update.

Integer softwareUpdateStatus()

Description

Returns the current status of any ongoing software update activity. The value returned by
this function shall be:

Value Description
-2 No software update is in progress.
-1 New software is available to download for the OITF.
0...99 New software is being downloaded to the OITF and the value gives
an approximation of the amount already downloaded.
100 Indicates that new software has been successfully downloaded to
the OITF and is available for installation.
1001 ... 1999 Indicates that an error occurred during the download of new

software to the OITF. This range of values can be used to provide
an implementation specific error code.

7.11.1.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following

manner:

Intrinsic event

Corresponding DOM event

DOM Event properties

onSoftwareUpdate

SoftwareUpdate

Bubbles: No
Cancellable: No

Context Info: updateEvent, seconds

Note: the DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications SHOULD
NOT rely on receiving these events during the bubbling or the capturing phase. Remote Uls that use DOM event handlers
SHALL call the addEventListener() method onthe application/oipfScheduledRecording object itself.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 179 (415)

7.12 Metadata APIs

This section defines the JavaScript APIs used by DAE applications for reading and searching metadata about
programmes. This API does not specify whether these query operations are carried out on the OITF or whether they
require communication with a server.

The metadata API provides DAE applications with high-level access to metadata about programmes and channels. This
document describes the mapping between this APl and CoD and programme guide metadata. Mappings between this API
and other metadata sources are not specified in this document.

This section SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a “type”
attribute with value “bcg” or “dvb-si” as defined in section 9.3.7 in their capability.

Note that in order to access the metadata of programmes and channels several extensions to the Programme and
Channel classes have been defined when the OITF has indicated support for <clientMetadata>. See sections
7.16.2.3 “Metadata extensions to Programme” and 7.13.11.3 “Metadata extensions to Channel” for more information).

The functionality as described in this section is subject to the security model of section 10 (in particular section 10.1.3.6).

7.12.1 The application/oipfSearchManager embedded object

OITFs SHALL implement the “application/oipfSearchManager” embedded object. This object provides a
mechanism for applications to create and manage metadata searches.

7.12.1.1 Properties

readonly Integer guideDaysAvailable

The number of days for which guide data is available. A value of -1 means that the amount of guide data
available is unknown.

function onMetadataUpdate(Integer action, Integer info, Object object)

This function is the DOM 0 event handler for events indicating changes in metadata. This SHALL be raised
under the following circumstances:

1) When a new version of the metadata is discovered. Note that new versions of metadata can be made
available without any of the individual items of metadata changing. It is an application's responsibility to
determine what, if anything, has changed.

2) When the values of the blocked or locked properties on a content item change due to changes in the
parental control subsystem (e.g. parental control being enabled or disabled, or a content item being
unlocked with a PIN).

The specified function is called with the arguments action, info and object. These arguments are defined as
follows:

e Integer action - the type of update that has taken place. This field will take one of the following

values:
Value Description

1 A new version of metadata is available (see section 4.1.2.1.2 of
[OIPF_METAZ2]) and applications SHOULD discard all references to
Programme objects immediately and re-acquire them.

2 A change to the parental control flags for a content item has occurred (e.g. the
user has unlocked the parental control features of the receiver, allowing a
blocked item to be played).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 180 (415)

3 A flag affecting the filtering criteria of a channel has changed. Applications
MAY listen for events with this action code to update lists of favourite
channels, for instance.

e Integer info - extended information about the type of update that has taken place. If the action
argument is set to the value 3, the value of this field SHALL be one or more of the following:

Value Description
1 The list of blocked channels has changed.
2 A list of favourite channels has changed.
4 The list of hidden channels has changed.

If the action argument is set to the value 2, the value of this field SHALL be one or more of:

Value Description
1 The block status of a content item has changed.
2 The lock status of a content item has changed.

This field is treated as a bitfield, so values MAY be combined to allow multiple reasons to be passed.

e Object object - the affected channel, programme, or CoD asset prior to the change. If more than
one is affected, then this argument SHALL take the value null.

function onMetadataSearch(MetadataSearch search, Integer state)

This function is the DOM 0 event handler for events relating to metadata searches. The specified function is
called with the arguments search and state. These arguments are defined as follows:

e MetadataSearch search — the affected search

e Integer state —the new state of the search

Value Description

0 Search has finished. This event SHALL be generated when a search has
completed.

1 This value is not used.

2 This value is not used.

3 The MetadataSearch object has returned to the idle state, either because of a
call to SearchResults._abort() or because the parameters for the search
have been modified (e.g. the query, constraints or search target).

4 The search cannot be completed due to a lack of resources or any other
reason (e.qg. insufficient memory is available to cache all of the requested

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 181 (415)

results).

7.12.1.2 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following

manner:
Intrinsic event Corresponding DOM event DOM Event properties

onMetadataSearch MetadataSearch Bubbles: No

Cancellable: No

Context Info: search, state
onMetadataUpdate MetadataUpdate Bubbles: No

Cancellable: No

Context Info: action, info, object

Note: these DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM
event handlers SHALL call the addEventListener () method on the application/oipfSearchManager
object itself. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.12.1.3 Methods

MetadataSearch createSearch(Integer searchTarget)

Description

Create a MetadataSearch object that can be used to search the metadata.

Arguments

searchTarget

The metadata that should be searched.

Valid values of the searchTarget parameter are:

Value Description
1 Metadata relating to scheduled content shall be
searched.
2 Metadata relating to content on demand shall be
searched.

These values are treated as a bitfield, allowing searches to be carried
out across multiple search targets.

ChannelConfig getChannelConfig()

Description

Returns the channel line-up of the tuner in the form of a ChannelConfig object as defined
in section 7.13.9. This includes the favourite lists.

The ChannelConfig object returned from this function SHALL be identical to the
ChannelConfig object returned from the getChannelConfig() method on the
video/broadcast object as defined in section 7.13.1.3.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 182 (415)

7.12.2 The MetadataSearch class

A MetadataSearch object represents a query of the metadata about available programmes. Applications can create
MetadataSearch objects using the createSearch() method on the application/oipfSearchManager
object. When metadata queries are performed on a remote server, the protocol used is defined in section 4.1.2.2 of
[OIPF_METAZ].

Each search consists of three steps:

1. Definition of the query. The application creates a MetadataSearch object, and either creates its associated
Query object, or sets a query using the fFindProgrammesFromStream() method, and sets any applicable
constraints and result ordering.

2. Acquisition of results. The OITF acquires some or all of the items that match the specified query and constraints, and
caches the requested subset of the results. This is typically triggered by a call to getResults().

3. Retrieval. The application accesses the results via the SearchResults class.

The MetadataSearch and SearchResults classes work together to manage an individual search. For every search,
the MetadataSearch object and its corresponding SearchResul ts object SHALL be in one of three states as
described in Table 7. Figure 13 below shows the transitions between these states:

Figure 13: State machine for a metadata search (informative)

Idle }
A

SearchResults.abort()

OR
MetadataSearch.findProgrammesFromStream()
OR changing the query, constraints or ordering
rules on the MetadataSearch object

OR insufficient resources to retrieve all of the
requested results

MetadataSearch.
findProgrammesFromStream()

SearchResults.getResults()

SearchResults.getResults()

Searching }

A

MetadataSearchEvent
state=0 SearchResults.getResults()

[Found \
J SearchResults.abort()

OR MetadataSearch.findProgrammesFromStream()
OR changing the query, constraints or ordering rules
on the MetadataSearch object.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 183 (415)

Table 7: Metadata search states (normative)

State

Description

Idle

The search is idle; no results are available. This is the initial state of the search. In this
state, the application can set or modify the query, constraints or ordering rules that are
applied to the search.

No search results are available in this state — any calls to SearchResults.item()
SHALL return undefined and the values of the length and totalSize properties on the
SearchResults object SHALL return zero. Any search results that have been cached by
the terminal SHALL be discarded when the Idle state is entered.

Calling the SearchResults.getResults() method SHALL cause a state transition to
the Searching state.

Searching

Results are being retrieved and are not yet available to applications.

If the terminal has not previously cached the full set of search results, the terminal
performs the search to gather the requested results.

If a new version of the metadata is detected (e.g. due to an EIT update) while the search
is in this state, results SHALL be retrieved from either the new or original version of the
metadata but SHALL NOT be retrieved from a combination of the two versions.

Calls to SearchResults. item() SHALL return undefined.

Any modification of the search parameters (e.g. changing the query or adding/removing
constraints, or calling FindProgrammesFromStream()) by the application SHALL stop
the current search and cause a transition to the Idle state. The terminal SHALL dispatch a
MetadataSearch event with state=3.

When all requested results have been found, the terminal SHALL dispatch a
MetadataSearch event with state=0 and a state transition to the Found state SHALL
occur.

If the search cannot be completed due to a lack of resources or any other reason, the
terminal SHALL dispatch a MetadataSearch event with state=4 and a state transition to
the Idle state SHALL occur.

Calls to the SearchResults.getResults()method SHALL abort the retrieval of search
results and attempt to retrieve the newly-requested set of results instead.

NOTE: Calling getResults() when in the searching state may be used to fetch a group
of items starting at a different offset or with a different count.

Found

Search results are available and can be retrieved by applications. The data exposed via
the SearchResults. item() method is static and never changes as a result of any
updates to the underlying metadata database until SearchResults.getResults() is
next called.

If a new version of the metadata is detected (e.g. due to an EIT update), a
MetadataUpdate event is dispatched with action=1. Subsequent calls to
SearchResult.getResults() SHALL return results based on the updated metadata.

Calls to SearchResults.getResults() SHALL cause a state transition to the
Searching state.

Any modification of the search parameters (e.g. changing the query or adding/removing
constraints, or calling findProgrammesFromStream()) by the application SHALL cause
the current set of results to be discarded and SHALL cause a transition to the Idle state.
The terminal SHALL dispatch a MetadataSearch event with state=3.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 184 (415)

The FindProgrammesFromStream() method acts as a shortcut for setting a query and a set of constraints on the
MetadataSearch object . Regardless of whether the query and constraints are set explicitly by the application or via
findProgrammesFromStream(), results are retrieved using the getResults() method.

Changes to the search parameters (e.g. changing the query or adding/removing constraints or modifying the search target,
or calling fFindProgrammesFromStream()) SHALL be applied when the getResults() method on the
corresponding SearchResults object is called. Due to the nature of metadata queries, searches are asynchronous and
events are used to notify the application that results are available. MetadataSearch events SHALL be targeted at the
application/oipfSearchManager object.

The present document is intentionally silent about the implementation of the search mechanism and the algorithm for
retrieving and caching search results except where described in Table 7 above. When performing a search, the receiver
MAY gather all search results and cache them (or cache a set of pointers into the full database), or gather only the subset
of search results determined by the getResults() parameters, or take an alternative approach not described here.

7.12.2.1 Properties

readonly Integer searchTarget

The target(s) of the search. Valid values are:

Value Description
1 Metadata relating to scheduled content SHALL be searched.
2 Metadata relating to on-demand content SHALL be searched.

These values SHALL be treated as a hitfield, allowing searches to be carried out across multiple search
targets.

readonly SearchResults result

The subset of search results that has been requested by the application.

7.12.2.2 Methods

void setQuery(Query query)

Description Set the query terms to be used for this search, discarding any previously-set query terms.

Setting the search parameters using this method will implicitly remove any existing
constraints, ordering or queries created by prior calls to methods on this object.

Arguments query The query terms to be used

void addRatingConstraint(ParentalRatingScheme scheme, Integer threshold)

Description Constrain the search to only include results whose parental rating value is below the
specified threshold.

Arguments scheme The parental rating scheme upon which the constraint SHALL be based. If
the value of this argument is nul I, any existing parental rating constraints
SHALL be cleared.

threshold The threshold above which results SHALL NOT be returned. If the value of

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 185 (415)

this argument is nul I, any existing constraint for the specified parental
rating scheme SHALL be cleared.

void addCurrentRatingConstraint()

Description

Constrain the search to only include results whose parental rating value is below the
threshold currently set by the user.

void addChannelConstraint(ChannelList channels)

Description Constrain the search to only include results from the specified channels. If a channel
constraint has already been set, subsequent calls to addChannelConstraint()SHALL
add the specified channels to the list of channels from which results should be returned.
For CoD searches, adding a channel constraint SHALL have no effect.

Arguments channels The channels from which results SHALL be returned. If the value of this

argument is nul 1, any existing channel constraint SHALL be removed.

void addChannelConstraint(Channel channel)

Description Constrain the search to only include results from the specified channel. If a channel
constraint has already been set, subsequent calls to addChannelConstraint() SHALL
add the specified channel to the list of channels from which results should be returned.
For CoD searches, adding a channel constraint SHALL have no effect.

Arguments channel The channel from which results SHALL be returned. If the value of this

argument is nul 1, any existing channel constraint SHALL be removed.

void orderBy(String field, Boolean ascending)

Description Set the order in which results SHOULD be returned in future. Any existing search results
SHALL not be re-ordered. Subsequent calls to orderBy () will apply further levels of
ordering within the order defined by previous calls. For example:

orderBy(*'ServiceName', true);

orderBy("'PublishedStart', true);
will cause results to be ordered by service name and then by start time for results with the
same channel number.

Arguments field The name of the field by which results SHOULD be sorted. A value of

null indicates that any currently-set order SHALL be cleared and the
default sort order should be used.

ascending Flag indicating whether the results SHOULD be returned in ascending or
descending order.

Query createQuery(String field, Integer comparison, String value)

Description

Create a metadata query for a specific value in a specific field within the metadata. Simple
queries MAY be combined to create more complex queries. Applications SHALL follow the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 186 (415)

Arguments

JavaScript type conversion rules to convert non-string values into their string
representation, if necessary.
field The name of the field to compare. Fields are identified using the format
<classname>.<propertyname> where classname SHALL be one of
“Programme”, “CODAsset”, “CODService” or “CODFolder” and
<propertyname> SHALL be a valid property name on the corresponding
class.
comparison The type of comparison. One of:
Value Description
0 True if the specified value is equal to the value of
the specified field.
1 True if the specified value is not equal to the value
of the specified field.
2 True if the value of the specified field is greater
than the specified value.
3 True if the value of the specified field is greater
than or equal to the specified value.
4 True if the value of the specified field is less than
the specified value.
5 True if the value of the specified field is less than
or equal to the specified value.
6 True if the string value of the specified field
contains the specified value. This operation SHALL
be case insensitive, and SHALL match parts of a
word as well as whole words (e.g. a value of “term”
will match a field value of “Terminator”).
value The value to check. Applications SHALL follow the JavaScript type
conversion rules to convert non-string values into their string
representation, if necessary

void FindProgrammesFromStream(Channel channel, Integer startTime,

Integer count)

Description

Set a query and constraints for retrieving metadata for programmes from a given channel
and given start time from metadata contained in the stream as defined in section 4.1.3 of
[OIPF_METAZ2]. Setting the search parameters using this method will implicitly remove any
existing constraints, ordering or queries created by prior calls to methods on this object.

This method does not cause the search to be performed; applications must call
getResults() to retrieve the results. Applications SHALL be notified of the progress of the
search via MetadataSearch events as described in section 7.12.1.2.

Arguments

channel

The channel for which programme information should be found.

startTime

The start of the time period for which results should be returned measured in
seconds since midnight (GMT) on 1/1/1970. The start time is inclusive; any

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 187 (415)

programmes starting at the start time, or which are showing at the start time,
will be included in the search results. If null, the search will start from the
current time.

count Optional argument giving the maximum number of programmes for which
information should be fetched. This places an upper bound on the number of
results that will be present in the result set — for instance, specifying a value of
2 for this argument will result in at most two results being returned by calls to
getResults() even if a call to getResults() requests more results.

If this argument is not specified, no restrictions are imposed on the number of
results which may be returned by calls to getResults().

7.12.3 The Query class

The Query class represents a metadata query that the user wants to carry out. This may be a simple search, or a complex
search involving Boolean logic. Queries are immutable; an operation on a query SHALL return a new Query object,
allowing applications to continue referring to the original query.

The examples below show how more complex queries can be constructed:

Query ga = mySearch.createQuery("'Title", 6, "Terminator');
Query gb = mySearch.createQuery(''SpokenLanguage', 0, "fr-CA"™);
Query gqc = gb.and(ga.not());

7.12.3.1 Properties

This section is intentionally left empty.

7.12.3.2 Methods

Query and(Query query)

Description Create a query based on the logical AND of the predicates represented by the query
currently being operated on and the argument query.

Arguments query The second predicate for the AND operation.

Query or(Query query)

Description Create a query based on the logical OR of the predicates represented by the query
currently being operated on and the argument query.

Arguments query The second predicate for the OR operation.

Query not()

Description Create a query that is the logical negation of the predicates represented by the query
currently being operated on.

7.12.4 The SearchResults class

The SearchResults class represents the results of a metadata search. Since the result set may contain a large number
of items, applications request a ‘window’ on to the result set, similar to the functionality provided by the OFFSET and
LIMIT clauses in SQL.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 188 (415)

Applications MAY request the contents of the result in groups of an arbitrary size, based on an offset from the beginning
of the result set. The data SHALL be fetched from the appropriate source, and the application SHALL be notified when
the data is available.

The set of results SHALL only be valid if a call to getResults()has been made and a MetadataSearch event notifying
the application that results are available has been dispatched. If this event has not been dispatched, the set of results
SHALL be empty (i.e. the value of the total Size property SHALL be 0 and calls to item() SHALL return
undefined).

In addition to the properties and methods defined below a SearchResults object SHALL support the array notation to
access the results in this collection.

7.12.4.1 Properties

readonly Integer length

The number of items in the current window within the overall result set. The value of this property SHALL be
zero until getResults()has been called and a MetadataSearch event notifying the application that results
are available has been dispatched. If the current window onto the result set is in fact the whole result set then
length will be the same as totalSize. Otherwise length will be less than totalSize.

readonly Integer offset

The current offset into the total result set.

readonly Integer totalSize

The total number of items in the result set.

The value of this property SHALL be zero until getResults() has been called and a MetadataSearch
event notifying the application that results are available has been dispatched.

7.12.4.2 Methods

Object item(Integer index)

Description Return the item at position index in the collection of currently available results, or
undefined if no item is present at that position. This function SHALL only return objects
that are instances of Programme, CODAsset, CODFolder, or CODService.

Arguments index The index into the result set.

Boolean getResults(Integer offset, Integer count)

Description Perform the search and retrieve the specified subset of the items that match the query.

Results SHALL be returned asynchronously. A MetadataSearch event with state=0
SHALL be dispatched when results are available.

This method SHALL always return false.

Arguments offset The number of items at the start of the result set to be skipped before data
is retrieved.
count The number of results to retrieve.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 189 (415)

void abort()

Description Abort any outstanding request for results and remove any query, constraints or ordering
rules set on the MetadataSearch object that is associated with this SearchResults
object. Regardless of whether or not there is an outstanding request for results, items
currently in the collection SHALL be removed (i.e. the value of the Iength property SHALL
be 0 and any calls to 1tem() SHALL return undefined). All cached search results SHALL
be discarded.

7.125 The MetadataSearchEvent class

This section is intentionally left empty.

7.12.6 The MetadataUpdateEvent class

This section is intentionally left empty.

7.13 Scheduled content and hybrid tuner APIs

This section SHALL apply to OITFs that have indicated support for tuner control (i.e.
<video_broadcast>true</video_broadcast> as defined in section 9.3.1) in their capability. It describes the
video/broadcast embedded object needed to support display and control by a DAE application of scheduled content
received over local tuner functionality available to an OITF, including the conveyance of the channel list to the server.
The term “tuner” is used here to identify a piece of functionality to enable switching between different types of scheduled
content services that are identified through logical channels. This includes IP broadcast channels, as well as traditional
broadcast channels received over a hybrid tuner.

7.13.1 The video/broadcast embedded object

The OITF SHALL support the video/broadcast embedded object with the following properties and methods, which
SHALL adhere to the tuner related security requirements in section 10.1.3.1. The MIME type of this object SHALL be
“video/broadcast”.

7.13.1.1 State diagram for video/broadcast objects

The state diagram below shows the states that a video/broadcast object may be in. Dashed lines indicate automatic
transitions between states. The video/broadcast object SHALL be in the unreal i zed state when it is instantiated.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 190 (415)

bindToCurrentChannel 4

Unrealized
bindToCurrentChannel() setChannel() *
nextChannel() 3
prevChannel() 3 v v
permanent error
P release()
setChannel(null)
Connecting
A
nextChannel() 5
transient prevChannel() ® setChannel() 12
error bindToCurrentChannel 5 nextChannel() s
transient error © prevChannel()
permanent
error
A 4
Presenting
release()
stop() setChannel(null)
stop()
nextChannel() 35
prevChannel() 33
bindToCurrentChannel
stop() bindToCurrentChannel()
A 4
Stopped release()
» setChannel(null)
1 — channel != null and the channel type is supported and nextChannel() 5
the combination of channel properties is valid and a suitable prevChannel() 35
tuner is available bindToCurrentChannel

2 —the current channel is in the channel list and a suitable
tuner is available

3 — the current channel is not n the channel list

4 —no channel is currently being presented or binding to the
necessary resources fails

5 — the current channel is in the channel list and no suitable
tuner is available

6 — the terminal successfully connected to the stream but

presentation of content is blocked, e.g. by a parental rating
mechanism

Figure 14: State diagram for embedded video/broadcast objects (informative).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 191 (415)

Transient errors are defined as ones that that the OITF will automatically recover from without intervention by an
application. Transient errors persist until either the condition which caused them is corrected or it is determined that it
cannot be connected and the error becomes permanent. Permanent errors are defined as ones that the OITF will not
automatically attempt to recover from.

Terminals SHALL perform the state changes in Table 8 under the conditions described and generate the listed event(s).

Terminals SHALL not change state in circumstances other than defined in this section.

Table 8: State transitions for the video/broadcast embedded object

Old State

Trigger

New State

State Transition
Events

Description

All states

setChannel (
channel) where
channel !'= null and the
channel type is supported
and the combination of
channel properties is
valid and a suitable tuner
is available

Connecting

PlayStateChange

The terminal attempts to connect to
the requested channel. The
currentChannel object reflects the
channel being changed to.

All states

setChannel (
channel) where
channel != null but
either the channel type is
not supported or the
combination of channel
properties is invalid or a
suitable tuner is not
available

No change

ChannelChangeError

The terminal remains in the same
state.

Connecting
or

Presenting
or Stopped

nextChannel (),
prevChannel () where
the video/broadcast
object currentChannel
is in the channel list and
a suitable tuner is
available

Connecting

PlayStateChange

The terminal attempts to connect to
the requested channel. The
currentChannel object reflects the
channel being changed to.

Connecting

nextChannel (),
prevChannel () where
the video/broadcast
object currentChannel
is not in the channel list

Unrealized

ChannelChangeError

PlayStateChange

Presenting
or Stopped

nextChannel (),
prevChannel () where
the video/broadcast
object currentChannel
is not in the channel list

No change

ChannelChangeError

The terminal remains in the same
state.

Connecting
or

Presenting
or Stopped

nextChannel (),
prevChannel () where
the video/broadcast
object currentChannel
is in the channel list but
no suitable tuner is
available

No change

ChannelChangeError

The terminal remains in the same
state.

Unrealized

bindToCurrentChann
el () when at least one
channel is currently being
presented by the OITF
and binding to the
necessary resources
does not fail

Presenting

PlayStateChange

The terminal binds the
video/broadcast object to the current
channel being natively presented.
The currentChannel object reflects
the channel being presented.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 192 (415)

Unrealized bindToCurrentChann Unrealized PlayStateChange The terminal continues to present the
el () when there is no current channel, if any.
channel currently being
presented or binding to
the necessary resources
to play the channel
through the
video/broadcast object
fails

Connecting The terminal successfully Presenting ChannelChangeSucc This transition occurs automatically
connected to the eeded when media presentation starts.
broadcast or IP multicast
stream and presented its PlayStateChange
contents.

Connecting The terminal successfully Connecting ChannelChangeSucc This is conceptually equivalent to a
connected to the eeded successful channel change where a
broadcast or IP multicast transient error immediately pre-empts
stream but presentation PlayStateChange media presentation without the
of content is blocked, e.g. video/broadcast object entering the
by a parental rating presenting state.
mechanism or content
protection mechanism

Connecting Recovery from a Presenting PlayStateChange If a video/broadcast object was
transient error, including forced from the presenting state to

) the connecting state due to a
- presentation of content transient error and that error
no longer being blocked condition clears while the
by a content protection video/broadcast object remains in the
mechanism (e.g. the start connecting state then the
of a free preview period video/broadcast object SHALL
or a channel that automatically transition back to the
changes from being presenting state.
encrypted to being in the
clear during the day)
- the end-user entering a
PIN code or other
equivalent authorization
to enable access to
content protected by
parental access control
- resumption of delivery
of media data

Connecting release() or Unrealized PlayStateChange The control is returned to the

or setChannel (null) terminal. The currentChannel

Presenting object is set to null.

or Stopped If an application has modified the set

of components being presented (e.g.
changing the audio or subtitle stream
being presented) then the same set
of components will continue to be
presented.

Connecting Permanent error Unrealized ChannelChangeError The terminal encountered a

including

- failure to change to a
new channel (e.g. the
channel cannot be found
or none of the media
components can be
decoded or insufficient
resources are available
to present the channel)

- exhaustion of all
possibilities for an end-
user to authorize access
to content protected by a
parental access control
mechanism (e.g. timeout
on a PIN entry dialogue)

PlayStateChange

permanent error

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 193 (415)

- delivery of media data
was interrupted and has
not resumed after an
implementation-
dependent timeout

Connecting stopQ) Stopped PlayStateChange

or

Presenting

Presenting Transient error including Connecting PlayStateChange The terminal encountered a transient
- presentation of content error:
being blocked by a During media presentation, transient
content protection errors (e.g. transient errors in the
mechanism, bitstream, temporary loss of signal or
- presentation of content temporary halting of media decoding
being blocked by a due to parental control issues) MAY
parental rating cause the object to transition from the
mechanism, presenting state to the
- interruption of delivery connecting state. Temporary loss
of media data (either via of resources due to presentation
IP or hybrid) if either; being interrupted by playback of
a) the media data is audio from memory MAY cause the
delivered over a object to transition from the
connection and the presenting state to the
connection remains intact connecting state.
or
b) the media data is
delivered via a
connectionless
mechanism

Presenting Permanent error Unrealized PlayStateChange The terminal encountered a

or Stopped including; permanent error.
- interruption of delivery
of media data where the
media data is delivered
over a connection and
the connection
terminates

Stopped bindToCurrentChannel() Connecting PlayStateChange Video and audio presentation is

enabled.
All states Destroy video/broadcast N/A When a video/broadcast object is

destroyed (e.g. by the
video/broadcast object being garbage
collected) control of broadcast video
SHALL be returned to the terminal. If
an application has modified the set of
components being presented (e.g.
changing the audio or subtitle stream
being presented) then the same set
of components will continue to be
presented.

When a video/broadcast object is
destroyed due to a page transition
within an application, terminals MAY
delay this operation until the new
page is fully loaded in order to avoid
display glitches if a video/broadcast
object is also present in the new
page. Presentation of broadcast
video or audio SHALL not be
interrupted in either case.

If the channel currently being presented is requested to be changed due to an action outside the application (for example,
the user pressing the CH+ key on the remote) then any video/broadcast object presenting that channel (e.g. as the result
of a call to bindToCurrentChannel ()) SHALL perform the same state transitions and dispatch the same events as if
the channel change operation was initiated by the application using the setChannel () method.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 194 (415)

If the value of the al locationMethod property is DYNAMIC_ALLOCAT ION, the following apply:
= Scarce resources such as media decoders SHALL be claimed while in the connecting state.
= Resources SHALL be released when the video/broadcast object transitions to the unreal ized state.

= Video and audio decoding resources SHALL be released when the video/broadcast object transitions to the
stopped state.

= Transitioning from the presenting to the connecting state SHOULD not cause scarce resources to be
released.

Applications can use the playState property of the video/broadcast object to read its current state.

When a video/broadcast object stops being rendered as defined in section 10.1 of the HTMLS5 specification as
referenced by [OIPF_DAE2_ WEB] an OITF MAY release scarce resources allocated for that object. Vice versa, a
video/broadcast object which is not visible but it’s still being rendered SHALL still be decoding video if it is in the
presenting state and any audio associated with the currently presented channel will still be audible. State transitions
caused by calls to methods on the video/broadcast object, or due to permanent or transient errors, will occur as shown
above regardless of the visibility of the object

NOTE: as implied by the text above, rendering state and visibility are not equivalent. This implies, just to give two
examples, that display : none will affect the object state while visibi lity:hidden will not.

7.13.1.2 Properties

Integer width

The width of the area used for rendering the video object. This property is only writable if property
fullScreen has value false. Changing the width property corresponds to changing the width property
through the HTMLOb jectElement interface, and must have the same effect as changing the width through
the DOM Level 2 Style interfaces (i.e. CSS2Properties interface style.width), at least for values
specified in pixels.

Integer height

The height of the area used for rendering the video object. This property is only writable if property
fullScreen has value false. Changing the height property corresponds to changing the height property
through the HTMLOb jectElement interface, and must have the same effect as changing the height through
the DOM Level 2 Style interfaces (i.e. CSS2Properties interface style.height), at least for values
specified in pixels.

readonly Boolean fullScreen

Returns true if this video object is in full-screen mode, false otherwise. The default value is false.

String data

Setting the value of the data property SHALL have no effect on the video/broadcast object. If this property
is read, the value returned SHALL always be the empty string.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 195 (415)

function onChannelChangeError(Channel channel, Number errorState)

The function that is called when a request to switch a tuner to another channel resulted in an error preventing
the broadcasted content from being rendered. The specified function is called with the arguments channel
and errorState. This function may be called either in response to a channel change initiated by the
application, or a channel change initiated by the OITF (see section 7.13.1.1). These arguments are defined
as follows:

e Channel channel - the Channel object to which a channel switch was requested, but for which the
error occurred. This object SHALL have the same properties as the channel that was requested,
except that for channels of type ID_DVB_* the values for the onid and tsid properties SHALL be
extracted from the transport stream when one was found (e.g. when errorState is 12).

e Number errorState — error code detailing the type of error;

Value Description
0 channel not supported by tuner.
1 cannot tune to given transport stream (e.g. no signal)
2 tuner locked by other object.
3 parental lock on channel.
4 encrypted channel, key/module missing.
5 unknown channel (e.g. can’t resolve DVB or ISDB triplet).
6 channel switch interrupted (e.g. because another channel switch was activated before the

previous one completed).

7 channel cannot be changed, because it is currently being recorded.

8 cannot resolve URI of referenced IP channel.

9 insufficient bandwidth.

10 channel cannot be changed by nextChannel ()/prevChannel () methods either

because the OITF does not maintain a favourites or channel list or because the
video/broadcast object is in the Unrealized state.

11 insufficient resources are available to present the given channel (e.g. a lack of available
codec resources).

12 specified channel not found in transport stream.

100 unidentified error.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 196 (415)

readonly Integer playState

The current play state of the video/broadcast object. Valid values are:

Value

Description

unrealized; the application has not made a request to start presenting a channel or has
stopped presenting a channel and released any resources. The content of the
video/broadcast object should be transparent but if not shall be an opaque black
rectangle. Control of media presentation is under the control of the OITF, as defined in
section H.2.

connecting; the terminal is connecting to the media source in order to begin playback.
Objects in this state may be buffering data in order to start playback. Control of media
presentation is under the control of the application, as defined in section H.2. The content
of the video/broadcast object is implementation dependent.

presenting; the media is currently being presented to the user. The object is in this state
regardless of whether the media is playing at normal speed, paused, or playing in a trick
mode (e.g. at a speed other than normal speed). Control of media presentation is under
the control of the application, as defined in section H.2. The video/broadcast object
contains the video being presented.

stopped; the terminal is not presenting media, either inside the video/broadcast object or
in the logical video plane. The logical video plane is disabled. The content of the
video/broadcast object SHALL be an opaque black rectangle. Control of media
presentation is under the control of the application, as defined in section H.2

See section 7.13.1.1 for a description of the state model for a video/broadcast object.

NOTE: Implementations where the content of the video/broadcast object is transparent in the unrealized
state will give a better user experience than ones where it is black. This happens for an application with video

in the background between when it includes a video/broadcast object in the page and when a call to

bindToCurrentChannel () completes. Applications which do not need to call bindToCurrentChannel ()

should not do so. The current channel can be obtained from the currentChannel property on the

ApplicationPrivateData object which is the same as that on the video/broadcast object under most

normal conditions.

function onPlayStateChange(Number state, Number error)

The function that is called when the play state of the video/broadcast object changes. This function may

be called either in response to an action initiated by the application, an action initiated by the OITF or an
error (see section 7.13.1.1).

The specified function is called with the arguments state and error. These arguments are defined as

follows:

e Number state — the new state of the video/broadcast object. Valid values are given in the
definition of the playState property above.

e Number error - if the state has changed due to an error, this field contains an error code detailing

the type of error. See the definition of onChannelChangeError above for valid values. If no error
has occurred, this argument SHALL take the value undefined.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 197 (415)

function onChannelChangeSucceeded(Channel channel)

The function that is called when a request to switch a tuner to another channel has successfully completed.

This function may be called either in response to a channel change initiated by the application, or a channel
change initiated by the OITF (see section 7.13.1.1). The specified function is called with argument channel,
which is defined as follows:

e Channel channel - the channel to which the tuner switched. This object SHALL have the same
properties with the same values as the currentChannel object (see section 7.13.7).

function onFullScreenChange()

The function that is called when the value of ful I1Screen changes.

function onfocus()

The function that is called when the video object gains focus.

function onblur()

The function that is called when the video object loses focus.

readonly StringCollection playerCapabilities

The list of media formats that are supported by the object. Each item SHALL contain a format label according
to [OIPF_MEDIAZ2].

If scarce resources are not claimed by the object, the value of this property SHALL be null.

readonly Integer allocationMethod

Returns the resource allocation method currently in use by the object. Valid values as defined in section
7.14.13.1 are:

e STATIC_ALLOCATION
e DYNAMIC_ALLOCATION

7.13.1.3 Methods

ChannelConfig getChannelConfig()

Description Returns the channel line-up of the tuner in the form of a ChannelConfig object as defined
in section 7.13.9. The method SHALL return the value nul I if the channel list is not
(partially) managed by the OITF (i.e., if the channel list information is managed entirely in the
network).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 198 (415)

Channel bindToCurrentChannel ()

Description

If the video/broadcast object is in the unrealized state and video from exactly one
channel is currently being presented by the OITF then this binds the video/broadcast
object to that video.

If the video/broadcast object is in the stopped state then this restarts presentation of
video and audio from the current channel under the control of the video/broadcast object.
If video from more than one channel is currently being presented by the OITF then this binds
the video/broadcast object to the channel whose audio is being presented.

If there is no channel currently being presented, or binding to the necessary resources to
play the channel through the video/broadcast object fails for whichever reason, the OITF
SHALL dispatch an event to the onPlayStateChange listener(s) whereby the state
parameter is given value 0 (“unrealized”) and the error parameter is given the
appropriate error code.

Calling this method from any other states than the unrealized or stopped states SHALL have
no effect.

See section 7.13.1.1 for more information of its usage.

NOTE: Returning a Channel object from this method does not guarantee that video or audio
from that channel is being presented. Applications should listen for the video/broadcast
object entering state 2 (“presenting”) in order to determine when audio or video is being
presented.

Channel createChannelObject(Integer idType, String dsd, Integer sid)

Description

Creates a Channel object of the specified 1dType. This method is typically used to create a
Channel object of type 1D_DVB_S1_DIRECT. The Channel object can subsequently be
used by the setChannel () method to switch a tuner to this channel, which may or may not
be part of the channel list in the OITF. The resulting Channel object represents a locally
defined channel which, if not already present there, does not get added to the channel list
accessed through the ChannelConfig class (see section 7.13.9).

Valid value for idType include: 1D_DVB_SI_DIRECT. For other values this behaviour is not
specified.

If the channel of the given type cannot be created or the delivery system descriptor is not
valid, the method SHALL return null.

If the channel of the given type can be created and the delivery system descriptor is valid,
the method SHALL return a Channel object whereby at a minimum the properties with the
same names (i.e. idType, dsd and sid) are given the same value as argument idType,
dsd and sid of the createChannelObject method.

Arguments

idType The type of channel, as indicated by one of the ID_* constants defined in
section 7.13.11.1. Valid values for idType include: ID_DVB_SI_DIRECT. For
other values this behaviour is not specified.

dsd The delivery system descriptor (tuning parameters) represented as a string
whose characters shall be restricted to the ISO Latin-1 character set. Each
character in the dsd represents a byte of a delivery system descriptor as defined
by DVB-SI [EN 300 468] section 6.2.13, such that a byte at position "i" in the
delivery system descriptor is equal the Latin-1 character code of the character at
position "i" in the dsd.

sid The service ID, which must be within the range of 1 to 65535.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 199 (415)

Channel createChannelObject(Integer idType, Integer onid, Integer tsid,

Integer sid, Integer sourcelD, String ipBroadcastiD)

Description Creates a Channel object of the specified idType. The Channel object can subsequently
be used by the setChannel () method to switch a tuner to this channel, which may or may
not be part of the channel list in the OITF. The resulting Channel object represents a locally
defined channel which, if not already present there, does not get added to the channel list
accessed through the ChannelConTig class (see section 7.13.9).

If the channel of the given idType cannot be created or the given (combination of)
arguments are not considered valid or complete, the method SHALL return nul l.

If the channel of the given type can be created and arguments are considered valid and
complete, then either:

1. Ifthe channel is in the channel list then a new object of the same type and with
properties with the same values SHALL be returned as would be returned by calling
getChannelWithTriplet() with the same parameters as this method.

2. Otherwise, the method SHALL return a Channel object whereby at a minimum the
properties with the same names are given the same value as the given arguments of
the createChannelObject() method. The values specified for the remaining
properties of the Channel object are set to undefined.

Arguments idType The type of channel, as indicated by one of the 1D_* constants defined in

section 7.13.11.1.

onid The original network ID. Optional argument that SHALL be specified
when the 1dType specifies a channel of type ID_DVB_*, 1D_IPTV_URI,
or ID_ISDB_* and SHALL otherwise be ignored by the OITF.

tsid The transport stream ID. Optional argument that MAY be specified when
the idType specifies a channel of type 1D_DVB_*, ID_IPTV_URI, or
ID_1SDB_* and SHALL otherwise be ignored by the OITF.

sid The service ID. Optional argument that SHALL be specified when the
idType specifies a channel of type ID_DVB_*, ID_IPTV_URI, or
ID_1SDB_* and SHALL otherwise be ignored by the OITF.

sourcelD The source_ID. Optional argument that SHALL be specified when the
idType specifies a channel of type ID_ATSC_T and SHALL otherwise be
ignored by the OITF.

ipBroadcastID The DVB textual service identifier of the IP broadcast service, specified in
the format “ServiceName .DomainName” when idType specifies a
channel of type ID_IPTV_SDS, or the URI of the IP broadcast service
when idType specifies a channel of type ID_1PTV_URI. Optional
argument that SHALL be specified when the idType specifies a channel
of type ID_IPTV_SDS or ID_IPTV_URI and SHALL otherwise be ignored
by the OITF.

void setChannel (Channel channel, Boolean trickplay,
String contentAccessDescriptorURL)

Description

Requests the OITF to switch a (logical or physical) tuner to the channel specified by
channel and render the received broadcast content in the area of the browser allocated for
the video/broadcast object.

If the channel specifies an idType attribute value which is not supported by the OITF or a
combination of properties that does not identify a valid channel, the request to switch

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 200 (415)

channel SHALL fail and the OITF SHALL trigger the function specified by the
onChannelChangeError property, specifying the value 0 (“Channel not supported by
tuner”) for the errorState, and dispatch the corresponding DOM event (see below).

If the channel specifies an idType attribute value supported by the OITF, and the
combination of properties defines a valid channel, the OITF SHALL relay the channel switch
request to a local physical tuner that is currently not in use by another video/broadcast
object and that can tune to the specified channel. If no tuner satisfying these requirements is
available (i.e. all physical tuners that could receive the specified channel are in use), the
request SHALL fail and OITF SHALL trigger the function specified by the
onChannelChangeError property, specifying the value ‘2’ (“tuner locked by other object”)
for the errorState and dispatch the corresponding DOM event (see below). If multiple
tuners satisfying these requirements are available, the OITF selects one.

If the channel specifies an IP broadcast channel, and the OITF supports idType
ID_IPTV_SDS or ID_IPTV_URI, the OITF SHALL relay the channel switch request to a
logical ‘tuner’ that can resolve the URI of the referenced IP broadcast channel. If no logical
tuner can resolve the URI of the referenced IP broadcast channel, the request SHALL fail
and the OITF SHOULD trigger the function specified by the onChannelChangeError
property, specifying the value 8 (“cannot resolve URI of referenced IP channel”) for the
errorState, and dispatch the corresponding DOM event.

The optional attribute contentAccessDescriptorURL allows for the inclusion of a Content
Access Streaming Descriptor (the format of which is defined in Annex E.2) to provide
additional information for dealing with IPTV broadcasts that are (partially) DRM-protected.
The descriptor may for example include Marlin action tokens or a previewLicense. The
attribute SHALL be undefined or null if it is not applicable. If the attribute
contentAccessDescriptorURL is present, the trickplay attribute shall take a value of
either true or false.

If the Transport Stream cannot be found, either via the DSD or the (ONID,TSID) pair, then a
call to onChannelChangeError with errorstate=5 (“unknown channel”) SHALL be
triggered, and the corresponding DOM event dispatched.

If the OITF succeeds in tuning to a valid transport stream but this transport stream does not
contain the requested service in the PAT, the OITF SHALL remain tuned to that location and
SHALL trigger a call to onChannelChangeError with errorstate=12 (“specified channel
not found in transport stream”), and dispatch the corresponding DOM event.

If, following this procedure, the OITF selects a tuner that was not already being used to
display video inside the video/broadcast object, the OITF SHALL claim the selected tuner
and the associated resources (e.g., decoding and rendering resources) on behalf of the
video/broadcast object.

If all of the following are true:
e the video/broadcast object is successfully switched to the new channel

e the channel is a locally defined channel (created using the createChannelObject
method)

e the new channel has the same tuning parameters as a channel already in the
channel list in the OITF

e the idType is a value other than ID_IPTV_URI

then the result of this operation SHALL be the same as calling setChannel with the channel
argument being the corresponding channel object in the channel list, such that:

e the values of the properties of the video/broadcast object currentChannel
SHALL be the same as those of the channel in the channel list

e any subsequent call to nextChannel or prevChannel SHALL switch the tuner to
the next or previous channel in the favourite list or channel list as appropriate, as
described in the definitions of these methods

Otherwise, if any of the above conditions is not true, then:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 201 (415)

the resu

over the

the values of the properties of the video/broadcast object currentChannel
SHALL be the same as those provided in the channel argument to this method,
updated as defined in section 8.4.3

the channel is not considered to be part of the channel list

Iting current channel after any subsequent call to nextChannel () or

prevChannel () is implementation dependent, however all appropriate functions SHALL be
called and DOM events dispatched. The OITF SHALL visualize the video content received

tuner in the area of the browser allocated for the video/broadcast object. If the

OITF cannot visualize the video content following a successful tuner switch (e.g., because
the channel is under parental lock), the OITF SHALL trigger the function specified by the
onChannelChangeError property with the appropriate channel and errorState value,
and dispatch a corresponding DOM event (see below). If successful, the OITF SHALL trigger
the function specified by the onChannelChangeSucceeded property with the given channel
value, and also dispatch a corresponding DOM event.

Arguments channel

The channel to which a switched is requested.

If the channel object specifies a ccid, the ccid identifies
the channel to be set. If the channel does not specify a
ccid, the idType determines which properties of the
channel are used to define the channel to be set, for
example, if the channel is of type ID_I1PTV_SDS or
ID_IPTV_URI, the ipBroadcastlID identifies the channel
to be set.

If null, the video/broadcast object SHALL transition to the
unrealized state and release any resources used for
decoding video and/or audio. A
ChannelChangeSucceeded event SHALL be generated
when the operation has completed.

trickplay

Optional flag indicating whether resources SHOULD be
allocated to support trick play. This argument provides a
hint to the receiver in order that it may allocate
appropriate resources. Failure to allocate appropriate
resources, due to a resource conflict, a lack of trickplay
support, or due to the OITF ignoring this hint, SHALL
have no effect on the success or failure of this method. If
trickplay is not supported, this SHALL be indicated
through the failure of later calls to methods invoking
trickplay functionality.

The timeShiftMode property defined in section 7.13.2.2
shall provide information as to type of trickplay resources
that should be allocated.

If argument contentAccessDescriptorURL is included
then the trickplay argument SHALL be included.

contentAccessDescriptorURL Optional argument containing a Content Access

Streaming descriptor (the format of which is defined in
Annex E.2) that can be included to provide additional
information for dealing with IPTV broadcasts that are
(partially) DRM-protected. The argument SHALL be
undefined or null if it is not applicable.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 202 (415)

void prevChannel)

Description Requests the OITF to switch the tuner that is currently in use by the video/broadcast
object to the channel that precedes the current channel in the active favourite list, or, if no
favourite list is currently selected, to the previous channel in the channel list. If it has reached
the start of the favourite/channel list, it SHALL cycle to the last channel in the list.

If the current channel is not part of the channel list, it is implementation dependent whether
the method call succeeds or fails and, if it succeeds, which channel is selected. In both
cases, all appropriate functions SHALL be called and DOM events dispatched.

If the previous channel is a channel that cannot be received over the tuner currently used by
the video/broadcast object, the OITF SHALL relay the channel switch request to a local
physical or logical tuner that is not in use and that can tune to the specified channel. The
behaviour is defined in more detail in the description of the setChannel method.

If an error occurs during switching to the previous channel, the OITF SHALL trigger the
function specified by the onChannelChangeError property with the appropriate channel
and errorState value, and dispatch the corresponding DOM event (see below).

If the OITF does not maintain the channel list and favourite list by itself, the request SHALL
fail and the OITF SHALL trigger the onChannelChangeError function with the channel
property having the value null, and errorState=10 (“channel cannot be changed by
nextChannel()/prevChannel() methods”).

If successful, the OITF SHALL trigger the function specified by the
onChannelChangeSucceeded property with the appropriate channel value, and also
dispatch the corresponding DOM event.

Calls to this method are valid in the Connecting, Presenting and Stopped states. They are
not valid in the Unrealized state and SHALL fail.

void nextChannel ()

Description Requests the OITF to switch the tuner that is currently in use by the video/broadcast
object to the channel that succeeds the current channel in the active favourites list, or, if no
favourite list is currently selected, to the next channel in the channel list. If it has reached the
end of the favourite/channel list, it SHALL cycle to the first channel in the list.

If the current channel is not part of the channel list, it is implementation dependent whether
the method call succeeds or fails and, if it succeeds, which channel is selected. In both
cases, all appropriate functions SHALL be called and DOM events dispatched. If the next
channel is channel that cannot be received over the tuner currently used by the
video/broadcast object, the OITF SHALL relay the channel switch request to a local
physical or logical tuner that is not in use and that can tune to the specified channel. The
behaviour is defined in more detail in the description of the setChannel method.

If an error occurs during switching to the next channel, the OITF SHALL trigger the function
specified by the onChannelChangeError property with the appropriate channel and
errorState value, and dispatch the corresponding DOM event (see below).

If the OITF does not maintain the channel list and favourite list by itself, the request SHALL
fail and the OITF SHALL trigger the onChannelChangeError function with the channel
property having the value null, and errorState=10 (“channel cannot be changed by
nextChannel()/prevChannel() methods”).

If successful, the OITF SHALL trigger the function specified by the
onChannelChangeSucceeded property with the appropriate channel value, and also
dispatch the corresponding DOM event.

Calls to this method are valid in the Connecting, Presenting and Stopped states. They are
not valid in the Unrealized state and SHALL fail.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 203 (415)

void setFullScreen(Boolean fullscreen)

Description

Sets the rendering of the video content to full-screen (ful Iscreen = true) or windowed
(Fullscreen = false) mode (as per [Req. 5.7.1.c] of [CEA-2014-A)). If this indicates a
change in mode, this SHALL result in a change of the value of property ful 1Screen.
Changing the mode SHALL NOT affect the z-index of the video object.

Arguments

fullScreen Boolean to indicate whether video content should be rendered full-screen or
not.

Boolean setVolume(Integer volume)

Description

Adjusts the volume of the currently playing media to the volume as indicated by volume.
Allowed values for the volume argument are all the integer values starting with 0 up to and
including 100. A value of 0 means the sound will be muted. A value of 100 means that the
volume will become equal to current “master” volume of the device, whereby the “master”
volume of the device is the volume currently set for the main audio output mixer of the
device. All values between 0 and 100 define a linear increase of the volume as a percentage
of the current master volume, whereby the OITF SHALL map it to the closest volume level
supported by the platform.

The method returns true if the volume has changed. Returns false if the volume has not
changed. Applications MAY use the getVolume() method to retrieve the actual volume set.

Arguments

volume Integer value between 0 up to and including 100 to indicate volume level.

Integer getVolume()

Description

Returns the actual volume level set; for systems that do not support individual volume
control of players, this method will have no effect and will always return 100.

void release()

Description

Releases the decoder/tuner used for displaying the video broadcast inside the
video/broadcast object, stopping any form of visualization of the video inside the
video/broadcast object and releasing any other associated resources.

If the object was created with an al locationMethod of STATIC_ALLOCATION, the
releasing of resources shall change this to DYNAMIC_ALLOCATION.

void stop()

Description

Stop presenting broadcast video. If the video/broadcast object is in any state other than the
unrealized state, it SHALL transition to the stopped state and stop video and audio
presentation. This SHALL have no effect on access to non-media broadcast resources such
as EIT information.

Calling this method from the unrealized state SHALL have no effect.

See section 7.13.1.1 for more information of its usage.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 204 (415)

7.13.1.4 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onfocus focus (as defined in section 5.2.1.2 of Bubbles: No
the DOM Level 3 Events specification as cancellable: No
referenced in [OIPF_DAE2_WEB]) '

Context Info: None

onblur blur (as defined in section 5.2.1.2 of Bubbles: No
the DOM Level 3 Events specification as Cancellable: No
referenced in [OIPF_DAE2_WEB]) '

Context Info: None

onFullScreenChange FullScreenChange Bubbles: No

Cancellable: No

Context Info: None

onChannelChangeError ChannelChangeError Bubbles: No

Cancellable: No

Context Info: channel,
errorState

onChannelChangeSucceeded ChannelChangeSucceeded Bubbles: No

Cancellable: No

Context Info: channel

onPlayStateChange PlayStateChange Bubbles: No

Cancellable: No

Context Info: state,
error

Note: these DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM
event handlers SHALL call the addEventListener () method on the video/broadcast object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.1.5 Styling

video/broadcast objects SHALL support CSS-property z-index, in both full-screen and windowed mode.

7.13.2 Extensions to video/broadcast for recording and time-shift

If an OITF has indicated support for recording functionality (i.e. by giving value true to element <recording> as
specified in section 9.3.3 in its capability description), the OITF SHALL support the following additional constants,
properties and methods on the video/broadcast object, in order to start a recording and/or time-shift of a current
broadcast.

Note that this functionality is subject to the security model as specified in section 10.1.

This functionality is subject to the state transitions represented in the following state diagram:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 205 (415)

Recording Error
stopTimeshift()

switch to another
channel

S 0: Unrealized

e Y

pause()
recordNow()

(i.e. starttime = now)

(10: Acquiring timeshift resources)

Timeshift resources 1: Recording has been newly scheduled)
acquired and media
connected
now >= starttime — x minutes warning
’ recordNow()
4(11: Timeshift mode has started) (2; Recording is about to start)

J/ now >= starttime
4(3: Acquiring recording resources (incl. media connection))

. Recording resources
stopRecording() acquired and media
connected

4: Recording has started

now >= endtime recording
(starttime + duration)

4(6: Recording has successfully completed)

Recording Error

(

Figure 15: PVR States for recordNow and timeshifting using video/broadcast (normative)

Note that when the user switches to another channel whilst the current channel is being recorded using recordNow or
the video/broadcast object gets destroyed, the conflict resolution and the release of resources is implementation
dependent. The OITF MAY report a recording error using a RecordingEvent with value 0 (“Unrealized”) for
argument state and with value 2 (“Tuner conflict”) for argument error in that case.

7.13.2.1 Constants

Name Value Use
POSITION_START 0 Indicates a playback position relative to the start of the buffered content.
POSITION_CURRENT 1 Indicates a playback position relative to the current playback position.
POSITION_END 2 Indicates a playback position relative to the end of the buffered content.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 206 (415)

7.13.2.2 Properties

function onPlaySpeedChanged(Number speed)

The function that is called when the playback speed of a channel changes.
The specified function is called with one argument, speed, which is defined as follows:
e Number speed — the playback speed of the media at the time the event was dispatched.

If the playback reaches the beginning of the time-shift buffer at rewind playback speed, then the play state is
changed to 2 (‘paused’) and a PlaySpeedChanged event with a speed of 0 is generated. If the playback
reaches the end of the time-shift buffer at fast-forward playback speed, then the play speed is set to 1.0 and
a PlaySpeedChanged event is generated.

function onPlayPositionChanged(Integer position)

The function that is called when change occurs in the play position of a channel due to the use of trick play
functions.

The specified function is called with one argument, position, which is defined as follows:

e Integer position —the playback position of the media at the time the event was dispatched,
measured from the start of the timeshift buffer. If the value of the currentTimeShiftMode property
is 1, this is measured in milliseconds from the start of the timeshift buffer. If the value of the
currentTimeShiftMode property is 2, this is measured in milliseconds from the start of the media
item. If the play position cannot be determined, this argument takes the value undefined.

readonly Integer playbackOffset

Returns the playback position, specified as the positive offset of the live broadcast in seconds, in the
currently rendered (timeshifted) broadcast.

When the currentTimeShiftMode property has the value 1, the value of this property is undefined.

readonly Integer maxOffset

Returns the maximum playback offset, in seconds of the live broadcast, which is supported for the currently
rendered (timeshifted) broadcast. If the maximum offset is unknown, the value of this property SHALL be
undefined.

When the currentTimeShiftMode property has the value 1, the value of this property is undefined.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 207 (415)

readonly Integer recordingState

Returns the state of the OITF's timeshift and recordNow functionality for the channel shown in the
video/broadcast object. One of:

Value Description

0 Unrealized: user/application has not requested timeshift or recordNow
functionality for the channel shown. No timeshift or recording resources are
claimed in this state.

1 Recording has been newly scheduled.

2 Recording is about to start. The receiver may be monitoring EPG data in order
to ensure that the programme scheduled to be recorded has not been moved,
or to support "accurate recording” functionality as defined in section 11 of TS
102 323 [TS 102 323], where slight changes in the start time of the recording
do not result in the start of the recording being missed. No recording
resources have yet been acquired, although the OITF may have tuned to the
channel which is to be recorded.

3 Acquiring recording resources (incl. media connection).
4 Recording has started.

5 Recording has been updated.

6 Recording has successfully completed.

10 Acquiring timeshift resources (incl. media connection).
11 Timeshift mode has started.

function onRecordingEvent(Integer state, Integer error, String recordingld)

This function is the DOM 0 event handler for notification of state changes of the recording functionality. The
specified function is called with the following arguments:

e Integer state - The current state of the recording. One of:

Value Description

0 Unrealized: user/application has not requested timeshift or recordNow
functionality for the channel shown. No timeshift or recording resources are
claimed in this state.

1 Recording has been newly scheduled.

2 Recording is about to start . The receiver may be monitoring EPG data in
order to ensure that the programme scheduled to be recorded has not been
moved, or to support "accurate recording" functionality as defined in section
11 of TS 102 323 [TS 102 323], where slight changes in the start time of the
recording do not result in the start of the recording being missed. No recording
resources have yet been acquired, although the OITF may have tuned to the
channel which is to be recorded.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 208 (415)

3 Acquiring recording resources (incl. media connection).
4 Recording has started.

5 Recording has been updated.

6 Recording has successfully completed.

10 Acquiring timeshift resources (incl. media connection).
11 Timeshift mode has started.

e Integer error - If the state of the recording has changed due to an error, this field contains an
error code detailing the type of error. One of:

Value Description
0 The recording sub-system is unable to record due to resource limitations.
1 There is insufficient storage space available. (Some of the recording may be
available).
2 Tuner conflict (e.g. due to conflicting scheduled recording).
3 Recording not allowed due to DRM restrictions.
4 Recording has stopped before completion due to unknown (probably

hardware) failure.

10 Timeshift not possible due to resource limitations.
11 Timeshift not allowed due to DRM restrictions.
12 Timeshift ended due to unknown failure.

If no error has occurred, this argument SHALL take the value undefined.

e String recordingld - The identifier of the recording to which this event refers, This SHALL be
equal to the value of the id property for the affected recording, if the event is associated with a
specific recording.

readonly Integer playPosition

If the value of the currentTimeShi ftMode property is 1, the current playback position of the media,
measured in milliseconds from the start of the timeshift buffer.

If the value of the currentTimeShiftMode property is 2, the current playback position of the media,
measured in milliseconds from the start of the media item.

readonly Number playSpeed

The current play speed of the media.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 209 (415)

readonly Number playSpeeds[]

Returns the ordered list of playback speeds, expressed as values relative to the normal playback speed
(2.0), at which the currently specified A/V content can be played (as a time-shifted broadcast in the
video/broadcast object), or undefined if the supported playback speeds are not known or the
video/broadcast object is not in timeshift mode.

If the video/broadcast object is in timeshift mode, the playSpeeds array SHALL always include at least values
1.0 and 0.0.

function onplaySpeedsArrayChanged()

The function that is called when the playSpeeds array values have changed. An application that makes use
of the playSpeeds array needs to read the values of the playSpeeds property again.

Integer timeShiftMode

The time shift mode indicates the mode of operation for support of timeshift playback in the video/broadcast
object. Valid values are:

Value Description
0 Timeshift is turned off.
1 Timeshift shall use “local resource”.
2 Timeshift shall use “network resources”.
3 Timeshift shall first use “local resource” when available and fallback to “network
resources”.

If property is not set the default value of the property is according to preferredTimeShiftMode in section
7.3.2.1.

readonly Integer currentTimeShiftMode

When timeshift is in operation the property indicates which resources are currently being used. Valid values
are:

Value Description
0 No timeshift.
1 Timeshift using “local resource”.
2 Timeshift using “network resources”.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 210 (415)

7.13.2.3 Methods

String recordNow(Integer duration)

Description

Starts recording the broadcast currently rendered in the video/broadcast object. If the
OITF has buffered the broadcasted content, the recording starts from the current playback
position in the buffer, otherwise start recording the broadcast stream as soon as possible
after the recording resources have been acquired. The specified duration is used by the
OITF to determine the minimum duration of the recording in seconds from the current
starting point.

Calling recordNow() while the broadcast that is currently rendered in the
video/broadcast object is already being recorded, SHALL have no effect on the recording
and SHALL return the value nul l.

In other cases, this method returns a String value representing a unique identifier to
identify the recording. If the OITF provides recording management functionality through the
APIs defined in section 7.10.4, this SHALL be the value of the id property of the associated
Recording object defined in section 7.10.5.

The OITF SHALL guarantee that recording identifiers are unique in relation to download
identifiers and CODAsset identifiers.

The method returns undefined if the given argument is not accepted to trigger a recording.

If the OITF supports metadata processing in the terminal, the fields of the resulting
Recording object MAY be populated using metadata retrieved by the terminal. Otherwise,
the values of these fields SHALL be implementation-dependent.

Arguments

duration The minimum duration of the recording in seconds. A value of -1 indicates that
the recording SHOULD continue until stopRecording() is called, storage
space is exhausted, or an error occurs. In this case it is essential that
stopRecording() is called later.

void stopRecording()

Description

Stops the current recording started by recordNow().

Boolean pause()

Description

Pause playback of the broadcast.
The action taken depends on the value of the timeShiftMode property.

If the value of the timeShiftMode property is O, if trick play is not supported for the channel
currently being rendered, or if the current time shift mode is not supported for the type of
channel being presented (e.g. attempting to use network resource to time shift a DVB or
analogue channel) this method shall return false.

If the timeshift mode is set to 1 or 3 (local resources) and if recording has not yet been
started, this method will start recording the broadcast that is currently being rendered live
(i.e., not time-shifted) in the video/broadcast object. If the OITF has buffered the ‘live’
broadcasted content, the recording starts with the content that is currently being rendering in
the video/broadcast object. If the recording started successfully, the rendering of the
broadcasted content is paused, i.e. a still-image video frame is shown.

If the timeshift mode is set to 2 (network resources) then the OITF shall follow the
procedures defined in section 8.2.6.4 and returns true. Since this operation is asynchronous
when the procedure are executed successful the rendering of the broadcasted content is
paused, i.e. a still-image video frame is shown, and PlaySpeedChanged event is generated.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 211 (415)

If the specified timeshift mode is not supported, this method shall return false. Otherwise,
this method shall return true. Acquiring the necessary resources to enable the specified
timeshift mode may be an asynchronous operation; applications may receive updates of this
process by registering a listener for RecordingEvents as defined in section 7.13.2.4.

If trick play is not supported for the channel currently being rendered, this method shall
return false, otherwise true is returned.

This operation may be asynchronous, and presentation of the video may not pause until
after this method returns. For this reason, a PlaySpeedChanged event will be generated
when the operation has completed, regardless of the success of the operation. If the
operation fails, the argument of the event SHALL be set to the previous play speed.

Boolean resume()

Description

Resumes playback of the time-shifted broadcast channel that is currently being rendered in
the video/broadcast object at the speed specified by setSpeed(). If the desired speed was
not set via setSpeed(), playback is resumed at normal speed (i.e. speed 1.0). If the
video/broadcast object is currently not rendering a time-shifted channel, the OITF shall
ignore the request to start playback and shall return false. If playback cannot be resumed
the OITF shall also return false, otherwise true is returned.

This operation may be asynchronous, and presentation of the video may not resume until
after this method returns. For this reason, a PlaySpeedChanged event will be generated
when the operation has completed, regardless of the success of the operation. If the
operation fails, the argument of the event SHALL be set to the previous play speed.

The action taken depends on the value of the timeShiftMode property.

If the value of the timeShiftMode property is 1 or 3 (local resources) then the OITF shall
resume playback of the broadcast channel as specified above and return true.

If the value of the timeShiftMode property is 2 (network resources) then the OITF shall
follow the procedures defined in section 8.2.6.4 and return true. Since this operation is
asynchronous when the procedure is successfully executed a PlaySpeedChanged event is
generated with current speed.

After initial operation of resume() several events may affect the operation.

If during fast forward the end of stream is reached the playback SHALL resume at normal
speed and a PlaySpeedChanged event is generated. If the end of stream is reached due to
end of content the playback will automatically be paused and a PlaySpeedChanged event is
generated. Any resources used for time-shifting SHALL NOT be discarded.

If during rewinding the playback reaches the point that it cannot be rewound further,
playback will automatically be paused (i.e. the play speed will be changed to 0) and a
PlaySpeedChanged event is generated.

If for any of these events timeShiftMode is set to 3 and local resources are not available
anymore then network sources SHALL be used according to the procedures defined in
section 8.2.6.4. The OITF SHALL perform a smooth transition of the stream between local
and network resources.

Boolean setSpeed(Number speed)

Description

Sets the playback speed of the time-shifted broadcast to the value speed, without changing
the paused/resumed state of the time-shifted broadcast.

When playback is paused (i.e. by setting the play speed to 0), the last decoded frame of
video is displayed.

If the time-shifted broadcast cannot be played at the desired speed, specified as a value
relative to the normal playback speed, the playback speed will be set to the best

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 212 (415)

approximation of speed. Applications are not required to pause playback of the broadcast or
take any other action before calling setSpeed().

If the video/broadcast object is currently not rendering a time-shifted channel, the OITF
shall ignore the request to change the playback speed and shall return false, otherwise
true is returned.

This operation may be asynchronous, and presentation of the video may not be affected until
after this method returns. For this reason, a PlaySpeedChanged event will be generated
when the operation has completed, regardless of the success of the operation. If the
operation fails, the argument of the event SHALL be set to the previous play speed.

The action taken depends on the value of the timeShiftMode property.

If the value of the timeShiftMode property is 1 or 3 (local resources) then the setSpeed()
method sets the playback speed of the time-shifted broadcast to the value speed.

If the timeShiftMode is set to 2 (network resources) the OITF shall follow the procedures
defined in section 8.2.6.4 and return true. Since this operation is asynchronous when the
procedure is successfully executed PlaySpeedChanged event is generated with the new
speed.

After initial operation of setSpeed() several events may affect the operation.

If during fast forward the end of stream is reached the playback SHALL resume at normal
speed and a PlaySpeedChanged event is generated. If the end of stream is reached due to
end of content the playback will automatically be paused and a PlaySpeedChanged event is
generated. Any resources used for time-shifting SHALL NOT be discarded.

If during rewinding the playback has reaches the point that it cannot be rewound further,
playback SHALL resume at normal speed and a PlaySpeedChanged event is generated.

If for any of these events if timeShiftMode is set to 3 and local resources are not available
anymore then network sources SHALL be used according to the procedures defined in
section 8.2.6.4. The OITF SHALL perform a smooth transition of the stream between local
and network resources.

Arguments

speed The desired relative playback speed, specified as a float value relative to the
normal playback speed of 1.0. A negative value indicates reverse playback. If the
time-shifted broadcast cannot be played at the desired speed, the playback
speed will be set to the best approximation.

Boolean seek(Integer offset, Integer reference)

Description

Sets the playback position of the time-shifted broadcast that is being rendered in the
video/broadcast object to the position specified by the offset and the reference point as
specified by one of the constants defined in section 7.13.2.1. Returns true if the playback
position is a valid position to seek to, false otherwise. If the video/broadcast object is
currently not rendering a time-shifted channel or if the position falls outside the time-shift
buffer, the OITF shall ignore the request to seek and shall return the value false.

Applications are not required to pause playback of the broadcast or take any other action
before calling seek().

This operation may be asynchronous, and presentation of the video may not be affected
until after this method returns. For this reason, a PlayPositionChanged event will be
generated when the operation has completed, regardless of the success of the operation. If
the operation fails, the argument of the event SHALL be set to the previous play position.

The action taken depends on the value of the timeShiftMode property.

If the timeShiftMode is set to 1 (local resources) the seek() method sets the playback
position of the time-shifted broadcast that is being rendered in the video/broadcast object as
defined above. Playback of live content is resumed if the new position equals the end of the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 213 (415)

time-shift buffer.

If the timeShiftMode is set to 2 (network resources) the OITF shall follow the procedures
defined in section 8.2.6.4 and return true. Since this operation is asynchronous when the
procedure is successfully executed PlayPositionChanged event is generated with the new
position.

Note that if timeShiftMode is set to 3 then local resources are used over network
resources.

After initial operation of seek() several events may affect the operation.

If during fastforward the end of stream is reached the playback SHALL resume at normal
speed and a PlaySpeedChanged event is generated. If the end of stream is reached due to
end of content the playback will automatically be paused and a PlaySpeedChanged event is
generated. Any resources used for time-shifting SHALL NOT be discarded.

If for any of these events if timeShiftMode is set to 3 and local resources are not available
anymore then network sources SHALL be used according to the procedures defined in
section 8.2.6.4. The OITF SHALL perform a smooth transition of the stream between local
and network resources.

Arguments offset The offset from the reference position, in seconds. This can be either a
positive value to indicate a time later than the reference position or a negative
value to indicate a time earlier than the reference position.

reference The reference point from which the offset SHALL be measured. The reference
point can be either POSITION_CURRENT, POSITION_START, or
POSITION_END.

Boolean stopTimeshift()

Description Stops rendering in time-shifted mode of the broadcast channel in the video/broadcast
object and, if applicable, plays the current broadcast from the live point and stops time-
shifting the broadcast. The OITF SHALL release all resources that were used to support
time-shifted rendering of the broadcast.

Returns true if the time-shifted broadcast was successfully stopped and resources were
released and false otherwise. If the video/broadcast object is currently not rendering a
time-shifted channel, the OITF shall ignore the request to stop the time-shift and shall return
the value false.

In addition to these methods, the OITF SHALL support an additional optional attribute “offSet” on the

setChannel (Channel channel, Boolean trickplay, String contentAccessDescriptorURL)
method of the video/broadcast object as defined in section 7.13.1.3, if the OITF has indicated support for scheduled
content over IP by defining one or more ID_IPTV_* values as part of the transport attribute of the
<video_broadcast> element in the capability description.

void setChannel (Channel channel, Boolean trickplay,
String contentAccessDescriptorURL, Integer offset)

Description Requests the OITF to switch a (logical or physical) tuner to the specified channel and
render the received broadcast content in the area of the browser allocated for the
video/broadcast object, as specified by the setChannel (Channel channel, Boolean
trickPlay, String contentAccessDescriptorURL) method in section 7.13.1.3.

The additional offSet attribute optionally specifies the desired offset with respect to the live
broadcast in number of seconds from which the OITF SHOULD start playback immediately
after the channel switch (whereby offSet is given as a positive value for seeking to a time

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 214 (415)

in the past). If an OITF cannot start playback from the desired position, as indicated by the
specified offSet (e.g. because the OITF did not, or could not, record the specified channel
prior to the call to setChannel), if the specified offSet is ‘0’, or if the offSet is not
specified, the OITF SHALL start playback from the live position after the specified channel

switch.
Arguments channel As defined for method setChannel ()in section 7.13.1.3.
trickplay Optional flag as defined for method setChannel ()in

section 7.13.1.3.

contentAccessDescriptorURL

Optional attribute as defined for method setChannel ()in
section 7.13.1.3.

offset

The optional offset attribute MAY be used to specify the
desired offset with respect to the live broadcast in number
of seconds from which the OITF SHOULD start playback

past).

immediately after the channel switch (whereby offset is
given as a negative value for seeking to a time in the

7.13.2.4 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated, in the following

manner:

Intrinsic event

Corresponding DOM event

DOM Event properties

onRecordingEvent

RecordingEvent

Bubbles: No
Cancellable: No

Context Info: state, error,
recordingld

onPlaySpeedChanged

PlaySpeedChanged

Bubbles: No
Cancellable: No

Context Info: speed

onPlayPositionChanged

PlayPositionChanged

Bubbles: No
Cancellable: No

Context Info: position

onPlaySpeedsArrayChanged

PlaySpeedsArrayChanged

Bubbles: No
Cancellable: No

Context Info: None

Note: the DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications SHOULD
NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM event
handlers SHALL call the addEventListener () method on the video/broadcast object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 215 (415)

7.13.3 Extensions to video/broadcast for access to EIT p/f

The following properties and events SHALL be added to the video/broadcast embedded object, if the OITF has indicated
support for accessing DVB-SI EIT p/f information, by giving the value “true” to element <cl ientMetadata> and
the value “eit-pf” or “dvb-si” to the type attribute of that element as defined in section 9.3.7 in their capability
profile.

Access to these properties SHALL adhere to the security model in section 10. The associated permission name is
“permission_metadata”.

readonly ProgrammeCollection programmes

The collection of programmes available on the currently tuned channel. This list is a ProgrammeCol lection
as defined in section 7.16.3 and is ordered by start time, so index 0 will always refer to the present
programme (if this information is available).

If the type attribute of the <clientMetadata> element in the OITF's capability description has the value
“eit-pf”, this list SHALL at least provide Programme objects as defined in section 7.16.2 for the present
and the directly following programme on the currently tuned channel, if that information is available. In other
words, the DAE application should not expect programmes. length to be larger than 2.

If the video/broadcast object is not currently tuned to a channel, or if the present/following information has
not yet been retrieved (e.g. the object has just tuned to a new channel and present/following information has
not yet been broadcast), or if present/following information is not available for the current channel, the length
of this collection SHALL be 0.

If the type attribute of the <clientMetadata> element in the OITF’s capability description has a value other
than “eit-pf”, an OITF MAY populate this field from other metadata sources described in [OIPF_META2].

The programmes . length property SHALL indicate the number of items that are currently known and up to
date (i.e. whereby the “startTime + duration”is not smaller than the current time). This may be 0 if no
programme information is currently known for the currently tuned channel.

In order to prevent misuse of this information, access to this property SHALL adhere to the security model in
section 10. The associated permission name is “permission_metadata”.

function onProgrammesChanged()

The function that is called when the programmes property has been updated with new programme
information, e.g. when the current broadcast programme is finished and a new one has started. The specified
function is called with no arguments.

7.13.3.1 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onProgrammesChanged ProgrammesChanged Bubbles: No
Cancellable: No

Context Info: None

Note: this DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications SHOULD
NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM event

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 216 (415)

handlers SHALL call the addEventListener () method on the video/broadcast object itself. The third

parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.4 Extensions to video/broadcast for playback of selected
components

To support the selection of specific A/V components for playback (e.g. a specific subtitle language, audio language, or

camera angle), the classes defined in sections 7.16.5.2 — 7.16.5.5 SHALL be supported and the constants, properties and
methods defined in section 7.16.5.1 SHALL be supported on the video/broadcast object.

7.13.5 Extensions to video/broadcast for parental ratings errors

For parental rating related errors or changes during playback of A/V content through the video/broadcast object an
OITF SHALL support the following intrinsic event properties and corresponding DOM events for the
video/broadcast object:

function onParentalRatingChange(String contentliD,
ParentalRatingCollection ratings, String DRMSystemID, Boolean blocked)

The function that is called whenever the parental rating of the content being played inside the embedded
object changes.

These events may occur at the start of a new content item, or during playback of a content item (e.g. during
playback of linear TV content).

The specified function is called with four arguments contentlD, rating, DRMSystemlD and blocked which
are defined as follows:

e String contentlD - the content ID to which the parental rating change applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of the
DRM system (i.e. in the case of Marlin BB it is the Marlin contentID, in the case of CSPG-CI+ the
value of this field is nul). Otherwise it MAY be null or undefined.

e ParentalRatingCollection ratings — the parental ratings of the currently playing content. The
ParentalRatingCol lection object is defined in section 7.9.

e String DRMSystemlD —the DRM System ID of the DRM system that generated the event as
defined by element DRMSystemlID in section 3.3.2 of [OIPF_METAZ2]. The value SHALL be null if
the parental control is not enforced by a particular DRM system.

e Boolean blocked - flag indicating whether consumption of the content is blocked by the parental
control system as a result of the new parental rating value.

function onParentalRatingError(String contentliD,
ParentalRatingCollection ratings, String DRMSystemlID)

The function that is called when a parental rating error occurs during playback of A/V content inside the
embedded object, and is triggered whenever one or more parental ratings are discovered and none of them
are valid. A valid parental rating is defined as one which uses a parental rating scheme that is supported by
the OITF and which has a parental rating value that is supported by the OITF.

The specified function is called with three arguments contentlID, rating, and DRMSystemlID which are
defined as follows:

e String contentlD - the content ID to which the parental rating error applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of the
DRM system (i.e. in the case of Marlin BB it is the Marlin contentID, in the case of CSPG-CI+ the
value of this field is nul). Otherwise it MAY be null or undefined.

e ParentalRatingCollection ratings — the parental ratings of the currently playing content. The
ParentalRatingCol lection object is defined in section 7.9.

e String DRMSystemlD — optional argument that specifies the DRM System ID of the DRM system
that generated the event as defined by element DRMSystemID in section 3.3.2 of [OIPF_META2].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 217 (415)

The value SHALL be null if the parental control is not enforced by a particular DRM system.

7.13.5.1 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onParentalRatingChange ParentalRatingChange Bubbles: No
Cancellable: No

Context Info: contentlID, ratings,
DRMSystemlD, blocked

onParentalRatingError ParentalRatingError Bubbles: No
Cancellable: No

Context Info: contentlD, ratings,
DRMSystemlID

Note: the above DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a ParentalRatingError event during the bubbling or the capturing phase. The
Applications that use DOM event handlers SHALL call the addEventListener () method on the
video/broadcast object itself. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.6 Extensions to video/broadcast for DRM rights errors

This section SHALL apply to OITF and/or server devices which have indicated support for DRM protection by providing
one or more <drm> elements as specified in section 9.3.10:

For notifying JavaScript about DRM licensing errors during playback of DRM protected A/V content through the
“video/broadcast” object, an OITF SHALL support the following intrinsic event property and corresponding DOM

event for the “video/broadcast” object:

function onDRMRightsError(Integer errorState, String contentlD, String DRMSystemlD,
String rightslssuerURL)

The function that is called:

e Whenever a rights error occurs for the A/V content (no license, license invalid), which has led to
blocking consumption of the content.

e Whenever a rights change occurs for the A/V content (license valid), which leads to unblocking the
consumption of the content.

This may occur during playback, recording or timeshifting of DRM protected AV content.

The specified function is called with four arguments errorState, contentlD, DRMSystemlID and
rightslssuerURL which are defined as follows:

e Integer errorState — error code detailing the type of error:

0: no license, consumption of the content is blocked.
1: invalid license, consumption of the content is blocked.
2: valid license, consumption of the content is unblocked.

e String contentlD - the unique identifier of the protected content in the scope of the DRM system
that raises the error (i.e. in the case of Marlin BB it is the Marlin contentID, in the case of CSPG-CIl+
the value of this field is null).

e String DRMSystemlID — DRMSystemID as defined by element DRMSystemID in section 3.3.2 of

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 218 (415)

[OIPF_METAZ2]. For example, for Marlin, the DRMSystemID value is
“urn:dvb:casystemid:19188".

e String rightslssuerURL — optional element indicating the value of the rightsissuerURL that can
be used to non-silently obtain the rights for the content item currently being played for which this
DRM error is generated, in cases whereby the rightslssuerURL is known. Cases whereby the
rightslssuerURL is known include cases whereby the rightslssuerURL has been extracted
from the MPEG2_TS of the protected content, retrieved from the SD&S discovery record or from the
associated BCG metadata. The corresponding rightslssuerURL fields are defined in section
4.1.3.4 of [OIPF_CSP2] and in section 3.3.2 of [OIPF_METAZ2] respectively. If different URLs are
retrieved from the stream and the metadata, then the conflict resolution is implementation-
dependent.

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onDRMRightsError DRMRightsError Bubbles: No
Cancellable: No

Context Info: errorState, contentlD,
DRMSystemID, rightslssuerURL

Note: the above DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DRMRightsError event during the bubbling or the capturing phase. Applications that
use DOM event handlers SHALL call the addEventListener () method on the video/broadcast object itself.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.7 Extensions to video/broadcast for current channel information

If an OITF has indicated support for extended tuner control (i.e. by giving value true to element
<extendedAVControl> as specified in section 9.3.6 in its capability description), the OITF SHALL support the
following additional properties and methods on the video/broadcast object.

The functionality as described in this section is subject to the security model of section 10.1.3.8.

Note the property onChannelScan and methods startScan and stopScan have been moved to section 7.13.9.

7.13.7.1 Properties

readonly Channel currentChannel

The channel currently being presented by this embedded object if the user has given permission to share this
information, possibly through a mechanism outside the scope of this specification. If no channel is being
presented, or if this information is not visible to the caller, the value of this property SHALL be null.

The value of this property is not affected during timeshift operations and SHALL reflect the value prior to the
start of a timeshift operation, for both local and network timeshift resources.

7.13.8 Extensions to video/broadcast for creating channel lists from
SD&S fragments

NOTE: the method createChannelList() has been moved to section 7.13.9.
7.13.9 The ChannelConfig class

The ChannelConfig class provides the entry point for applications to get information about the list of channels
available. It can be obtained in two ways:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 219 (415)

= By calling the method getChannelConfig() of the video/broadcast embedded object as defined in
section 7.13.1.3.

= By calling the method createChannelConfig() of the object factory API as defined in section 7.1.1.

The availability of the properties and methods are dependent on the capabilities description as specified in section 9.3.
The following table provides a list of the capabilities and the associated properties and methods. If the capability is false
the properties and methods SHALL NOT be available to the application. Properties and methods not listed in the
following table SHALL be available to all applications as long as the OITF has indicated support for tuner control (i.e.
<video_broadcast>true</video_broadcast> as defined in section 9.3.1) in their capability.

Capability Properties Methods
Element <extendedAVControl> onChannelScan startScan()
is set to “true” as defined in stopScan()

section 9.3.6.

Element <video_broadcast createChannelList()
type=""1D_IPTV_SDS"> is set as
defined in section 9.3.6.

The functionality as described in this section is subject to the security model of section 10.1.3.1.1 (for obtaining a
ChannelConfig object) and section 10.1.3.8 (for properties and methods covered by the <extendedAVControl>
capability as defined below).

7.13.9.1 Properties

readonly ChannelList channelList

The list of channels.

If an OITF includes a platform-specific application that enables the end-user to choose a channel to be
presented from a list then all the channels in the list offered to the user by that application SHALL be
included in this ChannelList.

The list of channels will be a subset of all those available to the OITF. The precise algorithm by which this
subset is selected will be market and/or implementation dependent. For example;

e If an OITF with a DVB-T tuner receives multiple versions of the same channel, one would be
included in the list and the duplicates discarded

e An OITF with a DVB tuner will often filter services based on service type to discard those which are
obviously inappropriate or impossible for that device to present to the end-user, e.g. firmware
download services.

The order of the channels in the list corresponds to the channel ordering as managed by the OITF. SHALL
return the value nul I if the channel list is not (partially) managed by the OITF (i.e., if the channel list
information is managed entirely in the network).

The properties of channels making up the channel list SHALL be set by the OITF to the appropriate values
as determined by the tables in section 8.4.3. The OITF SHALL store all these values as part of the channel
list.

Some values are set according to the data carried in the broadcast stream. In this case, the OITF MAY set
these values to undefined until such time as the relevant data has been received by the OITF, for example
after tuning to the channel. Once the data has been received, the OITF SHALL update the properties of the
channel in the channel list according to the received data.

Note: There is no requirement for the OITF to pro-actively tune to every channel to gather such data.

readonly FavouriteListCollection favouritelLists

A list of favourite lists. SHALL return the value nul l if the favourite lists are not (partially) managed by the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 220 (415)

OITF (i.e., if the favourite lists information is managed entirely in the network).

readonly FavouriteList currentFavouriteList

Currently active Favourite channel list object. If currentFavouritelList is undefined, no favourite filter

list is currently applied.

The OITF SHALL return the value nul I if the favourite lists are not (partially) managed by the OITF (i.e. if the
favourite lists information is managed entirely in the network).

function onChannelScan(Integer scanEvent,
Integer signalStrength,
Integer channelCount,

Integer channelNumber,
Integer transponderCount, Channel newChannel)

Integer progress, Integer frequency,

Integer channelType,

This function is the DOM 0 event handler for events relating to channel scanning. On IP-only receivers,
setting this property SHALL have no effect.

The specified function is called with the following arguments:

e Integer scanEvent - The type of event. Valid values are:

Value Description
0 A channel scan has started.
1 Indicates the current progress of the scan.
2 A new channel has been found.
3 A new transponder has been found.
4 A channel scan has completed.
5 A channel scan has been aborted.

e Integer progress - the progress of the scan. Valid values are in the range 0 - 100, or -1 if the
progress is unknown.

e Integer frequency - The frequency of the transponder in kHz (for scans on RF sources only).

e Integer signalStrength - The signal strength for the current channel. Valid values are in the
range O - 100, or -1 if the signal strength is unknown.

e Integer channelNumber - The logical channel number of the channel that has been found.

e Integer channelType - The type of channel that has been found. Valid values are the same as
for Channel .channelType.

e Integer channelCount - The total number of channels found so far during the scan.

e Integer transponderCount - The total number of transponders found so far during the scan (RF

sources only).

e Channel newChannel - When scanEvent equals 2, this argument provides a reference to the
Channel object that represents the newly identified channel. For other scanEvent values this
argument SHALL be NULL

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 221 (415)

function onChannelListUpdate()

This function is the DOM 0 event handler for events relating to channel list updates. Upon receiving a
ChannelListUpdate event, if an application has references to any Channel objects then it SHOULD
dispose of them and rebuild its references. Where possible Channel objects are updated rather than
removed, but their order in the ChannelConfig.all collection MAY have changed. Any lists created with
ChannelConfig.createFilteredList() SHOULD be recreated in case channels have been removed.

readonly Channel currentChannel

The current channel of the OITF if the user has given permission to share this information, possibly through a
mechanism outside the scope of this specification. If no channel is being presented, or if this information is
not visible to the caller, the value of this property SHALL be null.

In an OITF where exactly one video/broadcast object is in any state other than Unrealized and the
channel being presented by that video/broadcast object is the only broadcast channel being presented by
the OITF then changes to the channel presented by that video/broadcast object SHALL result in changes
to the current channel of the OITF.

In an OITF which is presenting more than one broadcast channel at the same time, the current channel of
the OITF is the channel whose audio is being presented (as defined in the bindToCurrentChannel ()
method). If that current channel is under the control of a DAE application via a video/broadcast object
then changes to the channel presented by that video/broadcast object SHALL result in changes to the
current channel of the OITF.

7.13.9.2 Methods

ChannelList createFilteredList(Boolean blocked, Boolean favourite,
Boolean hidden, String favouriteListID)

Description Create a filtered list of channels. Returns a subset of ChannelConfig.channelList.

The blocked, favourite and hidden flags indicate whether a channel is included in the
returned list. These flags correspond to the properties on Channel with the same names.
Each flag MAY be set to one of three values:

Value Meaning

true The channel is added if and only if the corresponding property
has the value true.

false The channel is added if and only if the corresponding property
has the value false.

undefined The channel is added regardless of the state of the
corresponding property.

A channel will only be added to the list if the values of all three flags allow it to be added.

The favouriteListlD attribute is used to select a particular favouritelList that the
createFilteredList method uses as a basis of the filtering process. If
favouritelListlID is the empty string (i.e. *”), then the filtering is performed on all available
channels as defined by ChannelConfig.channelList.

Arguments blocked Flag indicating whether manually blocked channels SHALL be added to
the list.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 222 (415)

favourite Flag indicating whether favourite channels SHALL be added to the list.

hidden Flag indicating whether hidden channels SHALL be added to the list.

favouriteListID If the value of the favourite flag is true, indicates which favourites list
SHALL be filtered upon.

void startScan(ChannelScanOptions options, ChannelScanParameters scanParameters)

Description Start a scan for new channels on all available sources. When each source finishes
scanning, an UpdateEvent SHALL be raised with the type CHANNELS__ INVAL 1DATED
and any channel lists for that source SHALL have been updated.

On IP-only receivers, this method SHALL have no effect.

Arguments options The options to the channel scan operation.

scanParameters The tuning parameters to be scanned. The value of this argument
SHALL be one of the classes that implement the
ChannelScanParameters interface and SHALL NOT be an
instance of the Channel ScanParameters class.

void stopScan()

Description

Stop a channel scan, if one is in progress. Any sources that have not finished scanning
SHALL have their scans aborted and channel line-ups for SHALL NOT be changed.

On IP-only receivers, this method SHALL have no effect.

ChannelList createChannelList(String bdr)

Description Creates a ChannelList object from the specified SD&S Broadcast Discovery Record.
Channels in the returned channel list will not be included in the channel list that can be
retrieved via calls to getChannelConfig().

Arguments bdr An XML-encoded string containing an SD&S Broadcast Discovery Record as

specified in [OIPF_METAZ]. If the string is not a valid Broadcast Discovery Record,
this method SHALL return nul 1.

Channel createChannelObject(Integer idType, Integer onid, Integer tsid,

Integer sid, Integer sourcelD, String ipBroadcastlID)

Description

Creates a Channel object of the specified idType. The Channel object can subsequently
be used by the setChannel method to switch a tuner to a channel that is not part of the
channel list which was conveyed by the OITF to the server. The scope of the resulting
Channel object is limited to the JavaScript environment (incl. video/broadcast object) to
which the Channel object is returned, i.e. it does not get added to the channellist available
through method getChannelConfig.

If the channel of the given idType cannot be created or the given (combination of)
arguments are not considered valid or complete, the method SHALL return nul I.

If the channel of the given type can be created and arguments are considered valid and
complete, the method SHALL return a Channel object whereby at a minimum the properties

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 223 (415)

with the same names are given the same value as the given arguments of the
createChannelObject method. The values specified for the remaining properties of the
Channel object are set to undefined.

Arguments

idType

The type of channel, as indicated by one of the ID_* constants defined in
section 7.13.11.1.

onid

The original network ID. Optional argument that SHALL be specified
when the idType specifies a channel of type ID_DVB_* or ID_ISDB_*.

tsid

The transport stream ID. Optional argument that MAY be specified when
the idType specifies a channel of type ID_DVB_* or 1D_I1SDB_*.

sid

The service ID. Optional argument that SHALL be specified when the
idType specifies a channel of type ID_DVB_* or ID_I1SDB_*.

sourcelD

The source_ID. Optional argument that SHALL be specified when the
idType specifies a channel of type ID_ATSC_T.

ipBroadcastID The DVB textual service identifier of the IP broadcast service, specified in

the format “ServiceName .DomainName”, or the URI of the IP broadcast
service. Optional argument that SHALL be specified when the idType
specifies a channel of type ID_I1PTV_SDS or 1D_IPTV_URI.

ChannelScanParameters createChannelScanParametersObject(Integer idType)

Description Create an instance of one of the subclasses of the ChannelScanParameters class (or one
of its subclasses). The exact subclass that will be returned SHALL be determined by the
value of the 1dType parameter.

Initial values of all properties on the returned object SHALL be undefined.

Arguments idType The type of object to be created. Valid values are given by the following

constants on the Channel class (see section 7.13.11.1):

e ID _DVB _Tor ID_DVB_T2 —returns an instance of the
DVBTChannelScanParameters class.

e ID DVB Cor ID_DVB C2-returns an instance of the
DVBCChannelScanParameters class.

e ID _DVB_Sor ID_DVB_S2 —returns an instance of the
DVBSChannelScanParameters class.

e ID_ATSC_ T —returns an instance of the
ATSCTChannelScanParameters class.

All other values, or channel types which are not supported by the OITF, SHALL
cause this method to return null.

ChannelScanOptions createChannelScanOptionsObject()

Description

Create an instance of the ChannelScanOptions class. Initial values of all properties on the
returned object SHALL be undefined.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 224 (415)

7.13.9.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated, in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onChannelScan ChannelScan Bubbles: No
Cancellable: No

Context Info: scanEvent, progress,
frequency, signalStrength,
channelNumber, channelType,
channelCount, transponderCount,
newChannel

onChannelListUpdate ChannelListUpdate Bubbles: No
Cancellable: No

Context Info: None

Note: the above DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM
event handlers SHALL call the addEventListener () method on the ChannelConfig object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.10 The ChannelList class

typedef Collection<Channel> ChannellList

A ChannelList represents a collection of Channel objects. See Annex K for the definition of the collection template.

In addition to the methods and properties defined for generic collections, the ChannelList class supports the additional
properties and methods defined below

7.13.10.1 Methods

Channel getChannel(String channellD)

Description Return the first channel in the list with the specified channel identifier. Returns nul I if no
corresponding channel can be found.

Arguments channellD The channel identifier of the channel to be retrieved, which is a value as
defined for the ccid and ipBroadcastID properties of the Channel object
as defined in section 7.13.11.

Channel getChannelByTriplet(Integer onid, Integer tsid, Integer sid, Integer nid)

Description Return the first (IPTV or non-IPTV) channel in the list that matches the specified DVB or
ISDB triplet (original network ID, transport stream ID, service ID).

Where no channels of type ID_ISDB_* or ID_DVB_* are available, or no channel identified
by this triplet are found, this method SHALL return nul I.

Arguments onid The original network ID of the channel to be retrieved.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 225 (415)

tsid The transport stream ID of the channel to be retrieved. If set to nul I the client
SHALL retrieve the channel defined by the combination of onid and sid. This
makes it possible to retrieve the correct channel also in case a remultiplexing
took place which led to a changed tsid.

sid The service ID of the channel to be retrieved.

nid An optional argument, indicating the network id to be used select the channel
when the channel list contains more than one entry with the same onid, tsid
and sid.

Channel getChannelBySourcelD(Integer sourcelD)

Description Return the first (IPTV or non-IPTV) channel in the list with the specified ATSC source ID.

Where no channels of type ID_ATSC_* are available, or no channel with the specified
source ID is found in the channel list, this method SHALL return null.

Arguments sourcelD The ATSC source_ID of the channel to be returned.

7.13.11 The Channel class

The Channel object represents a broadcast stream or service.

Channel objects typically represent channels stored in the channel list (see section 7.13.10). Channel objects may also
represent locally defined channels created by an application using the createChannelObject() methods on the
video/broadcast embedded object or the ChannelConFig class or the createChannelList() method on the
ChannelConfig class. Accessing the channel property of a ScheduledRecording object or Recording object
which is scheduled on a locally defined channel SHALL return a Channel object representing that locally defined
channel.

Except for the hidden property, writing to the writable properties on a Channel object SHALL have no effect for
Channel objects representing channels stored in the channel list. Applications SHOULD only change these writable
properties of a locally defined channel before the Channel object is referenced by another object or passed to an API
call as an input parameter. The effects of writing to these properties at any other time is implementation dependent.

The Channel class is defined as follows:

7.13.11.1 Constants

Name Value Use
TYPE_TV 0 Used in the channel Type property to indicate a TV channel.
TYPE_RADIO 1 Used in the channel Type property to indicate a radio channel.
TYPE_OTHER 2 Used in the channel Type property to indicate that the type of the channel

is unknown, or known but not of type TV or radio.

TYPE_ALL 128 Used during channel scanning to indicate that all TV, radio and other
channel types should scanned.

TYPE_HBBTV_DATA 256 Reserved for data services defined by [TS 102 796].

ID_ANALOG 0 Used in the idType property to indicate an analogue channel identified by
the property ‘Freq’ and optionally ‘cni’ or ‘name’.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 226 (415)

Name Value Use

1D_DVB_C 10 Used in the idType property to indicate a DVB-C channel identified by the
three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_S 11 Used in the idType property to indicate a DVB-S channel identified by the
three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_T 12 Used in the idType property to indicate a DVB-T channel identified by the
three properties: ‘onid’, ‘tsid’, ‘sid’.

1D_DVB_SI_DIRECT 13 Used in the 1dType property to indicate a channel that is identified

through its delivery system descriptor as defined by DVB-SI [EN 300 468]
section 6.2.13.

1D_DVB_C2 14 Used in the idType property to indicate a DVB-C or DVB-C2 channel
identified by the three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_S2 15 Used in the idType property to indicate a DVB-S or DVB-S2 channel
identified by the three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_DVB_T2 16 Used in the idType property to indicate a DVB-T or DVB-T2 channel
identified by the three properties: ‘onid’, ‘tsid’, ‘sid’.

1D_1SDB_C 20 Used in the idType property to indicate an ISDB-C channel identified by
the three properties: ‘onid’, ‘tsid’, ‘sid".

ID_ISDB_S 21 Used in the idType property to indicate an ISDB-S channel identified by
the three properties: ‘onid’, ‘tsid’, ‘sid’.

ID_ISDB_T 22 Used in the idType property to indicate an ISDB-T channel identified by
the three properties: ‘onid’, ‘tsid’, ‘sid".

ID_ATSC_T 30 Used in the idType property to indicate a terrestrial ATSC channel
identified by the property ‘sourcelD’.

ID_IPTV_SDS 40 Used in the idType property to indicate an IP broadcast channel identified
through SD&S by a DVB textual service identifier specified in the format
“ServiceName.DomainName” as value for property ‘ipBroadcastlD’, with
ServiceName and DomainName as defined in [DVB-IPTV]. This idType
SHALL be used to indicate Scheduled content service defined by
[OIPF_PROTZ2].

ID_IPTV_URI 41 Used in the idType property to indicate an IP broadcast channel identified
by a DVB MCAST URI (i.e. dvb-mcast://) or by a URI referencing a HAS
or MPEG DASH MPD (i.e. http:// or https://), as value for property
ipBroadcastlID.

7.13.11.2 Properties
This section defines the properties of the Channel object.

Properties that do not apply in a specific circumstance (e.g. onid does not apply unless the channel is of type I1D_DVB_*
or ID_1SDB_*) SHALL be undefined. The mapping to these properties is defined in section 8.4.3.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 227 (415)

readonly Integer channelType

The type of channel. The value MAY be indicated by one of the TYPE_* constants defined above. If the
type of the channel is unknown then the value SHALL be “undefined”.

NOTE: Values of this type between 256 and 511 are reserved for use by related specifications on request by
liaison.

readonly Integer idType

The type of identification for the channel, as indicated by one of the ID_* constants defined above

readonly String ccid

Unique identifier of a channel within the scope of the OITF. The ccid is defined by the OITF and SHALL have
prefix ‘ccid’: e.g. ‘ccid:{tunerID.}majorChannel{.minorChannel}.

Note: the format of this string is platform-dependent.

readonly String tunerlD

Optional unique identifier of the tuner within the scope of the OITF that is able to receive the given channel.

readonly Integer onid

DVB or ISDB original network ID.

readonly Integer nid

The DVB or ISDB network ID.

readonly Integer tsid

DVB or ISDB transport stream ID.

readonly Integer sid

DVB or ISDB service ID.

readonly Integer sourcelD

ATSC source_ID value.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 228 (415)

readonly Integer freq

For analogue channels, the frequency of the video carrier in kHz.

readonly Integer cni

For analogue channels, the VPS/PDC confirmed network identifier.

String name

The name of the channel. Can be used for linking analog channels without CNI. Typically, it will contain the
call sign of the station (e.g. 'HBO").

readonly Integer majorChannel

The major channel number, if assigned. Value undefined otherwise. Typically used for channels of type
ID_ATSC_* or for channels of type ID_DVB_* or ID_IPTV_SDS in markets where logical channel numbers
are used.

readonly Integer minorChannel

The minor channel number, if assigned. Value undefined otherwise. Typically used for channels of type
ID_ATSC_*.

readonly String dsd

For channels of type 1D_DVB_S1_DIRECT created through createChannelObject(), this property defines
the delivery system descriptor (tuning parameters) as defined by DVB-SI [EN 300 468] section 6.2.13.

The dsd property provides a string whose characters shall be restricted to the ISO Latin-1 character set.
Each character in the dsd represents a byte of a delivery system descriptor as defined by DVB-SI [EN 300
468] section 6.2.13, such that a byte at position "i" in the delivery system descriptor is equal the Latin-1
character code of the character at position "i* in the dsd.

Described in the syntax of JavaScript: let sdd[] be the byte array of a system delivery descriptor, in which
sdd[0] is the descriptor_tag, then, dsd is its equivalent string, if :

dsd. length==sdd. length and
for each integer i : O<=i<dsd.length holds: sdd[i] == dsd.charCodeAt(i).

readonly Boolean favourite

Flag indicating whether the channel is marked as a favourite channel or not in one of the favourite lists as
defined by the property faviDs.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 229 (415)

readonly StringCollection favIDs

The names of the favourite lists to which this channel belongs (see the favouritelLists property on the
ChannelConfig class).

readonly Boolean locked

Flag indicating whether the current state of the parental control system prevents the channel from being
viewed (e.g. a correct parental control pin has not been entered).

Note that this property supports the option of client-based management of parental control without excluding
server-side implementation of parental control.

readonly Boolean manualBlock

Flag indicating whether the user has manually blocked viewing of this channel. Manual blocking of a channel
will treat the channel as if its parental rating value always exceeded the system threshold.

Note that this property supports the option of client-based management of manual blocking without excluding
server-side management of blocked channels.

readonly String ipBroadcastiD

If the channel has an idType of ID_IPTV_SDS, this property denotes the DVB textual service identifier of the
IP broadcast service, specified in the format “ServiceName.DomainName” with the ServiceName and
DomainName as defined in [DVB-IPTV].

If the Channel has an idType of ID_IPTV_URI, this element denotes a URI of the IP broadcast service.

readonly Integer channelMaxBitRate

If the channel has an idType of ID_I1PTV_SDS, this property denotes the maximum bitrate associated to the
channel.

readonly Integer channelTTR

If the channel has idType ID_IPTV_SDS, this property denotes the TimeToRenegotiate associated to the
channel.

readonly Boolean recordable

Flag indicating whether the channel is available to the recording functionality of the OITF. If the value of the
pvrSupport property on the application/oipfConfiguration object as defined in section 7.3.3.2 is 0,
this property SHALL be false for all Channel objects.

7.13.11.3 Metadata extensions to Channel

This subsections SHALL apply for OITFs that have indicated <cl ientMetadata> with value “true” and a type
attribute with values “bcg”, “sd-s”, “eit-pf” or “dvb-si” as defined in section 9.3.7 in their capability profile.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 230 (415)

The OITF SHALL extend the Channel class with the properties and methods described below.

The values of many of these properties may be derived from elements in the BCG metadata. For optional elements that
are not present in the metadata, the default value of any property that derives its value from one of those elements
SHALL be undefined.

7.13.11.3.1 Properties

String longName

The long name of the channel. If both short and long hames are being transmitted, this property SHALL
contain the long name of the station (e.g. 'Home Box Office"). If the long name is not available, this property
SHALL be undefined.

The value of this property may be derived from the Name element that is a child of the BCG
Servicelnformation element describing the channel, where the Iength attribute of the Name element has
the value ‘long’.

String description

The description of the channel. If no description is available, this property SHALL be undefined.

The value of this field may be taken from the ServiceDescription element that is a child of the BCG
Servicelnformation element describing this channel.

readonly Boolean authorised

Flag indicating whether the receiver is currently authorised to view the channel. This describes the
conditional access restrictions that may be imposed on the channel, rather than parental control restrictions.

StringCollection genre

A collection of genres that describe the channel.

The value of this field may be taken from the ServiceGenre elements that are children of the BCG
Servicelnformation element describing the channel.

Boolean hidden

Flag indicating whether the channel SHALL be included in the default channel list.

readonly Boolean is3D

Flag indicating whether the channel is a 3D channel.

readonly Boolean isHD

Flag indicating whether the channel is an HD channel.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 231 (415)

string logoURL

The URL for the default logo image for this channel.

The value of this field may be derived from the value of the first Logo element that is a child of the BCG
Servicelnformation element describing the channel. If this element specifies anything other than the
URL of an image, the value of this filed SHALL be undefined.

7.13.11.3.2 Methods

String getField(String fieldld)

Description Get the value of the field referred to by fieldld that is contained in the BCG metadata for
this channel. If the field does not exist, this method SHALL return undefined.

Arguments fieldld The name of the field whose value SHALL be retrieved.

String getLogo(Integer width, Integer height)

Description Get the URI for the logo image for this channel. The width and height parameters specify the
desired width and height of the image; if an image of that size is not available, the URI of the
logo with the closest available size not exceeding the specified dimensions SHALL be
returned. If no image matches these criteria, this method SHALL return null.

The URI returned SHALL be suitable for use as the SRC attribute in an HTML IMG element or
as a background image.

The URIs returned by this method will be derived from the values of the Logo elements that
are children of the BCG Servicelnformation element describing the channel.

Arguments width The desired width of the image

height The desired height of the image

7.13.12 The FavouriteListCollection class

typedef Collection<FavouritelList> FavouriteListCollection

The FavouriteListCollection class represents a collection of Favouritelist objects. See Annex K for the
definition of the collection template. In addition to the methods and properties defined for generic collections, the
FavouriteListCollection class supports the additional methods defined below.

7.13.12.1 Methods

FavouritelList getFavouriteList(String favID)

Description Return the first favourite list in the collection with the given favListlID.

Arguments faviD The ID of a favourite list.

7.13.12.2 Extensions to FavouriteListCollection

If an OITF has indicated support for extended tuner control (i.e. by giving value true to element
<extendedAVControl> as specified in section 9.3.6 in its capability description), the OITF SHALL support the
following additional constants and methods on the FavouriteListCollection object.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 232 (415)

The functionality as described in this section is subject to the security model of section 10.1.3.8.

FavouritelList createFavouriteList(String name)

Description Create a new favourite list and add it to the collection. The new favourite list SHALL be
returned.
Arguments name The name to be associated to the new favourite list.

Boolean remove(Integer index)

Description Remove the list at the specified index from the collection. This method SHALL return true
of the operation succeeded, or false if an invalid index was specified.

Arguments index The index of the list to be removed.

Boolean commit()

Description Commit any changes to the collection to persistent storage. This method SHALL return
true of the operation succeeded, or false if it failed (e.g. due to insufficient space to store
the collection).

If a server has indicated that it requires control of the tuner functionality of an OITF in the
server capability description for a particular service, then the OITF SHOULD send an
updated Client Channel Listing to the server using HTTP POST over TLS as described in
section 4.8.1.1.

Boolean activateFavouriteList(string favID)

Description Active the favourite list from the collection. This method SHALL return true if the operation
succeeded, or false if an invalid index was specified. A newly created favourite list has to
be committed before it can be activated.

Arguments faviD The ID of a favourite list.

7.13.13 The FavouriteList class

typedef Collection<Channel> FavouritelList

The FavouriteList class represents a list of favourite channels. See Annex K for the definition of the collection
template. In addition to the methods and properties defined for generic collections, the FavouriteList class supports
the additional properties and methods defined below.

In order to preserve backwards compatibility with already existing DAE content the JavaScript toString() method
SHALL return the FavouriteList. id for FavouritelList objects.

7.13.13.1 Properties

readonly String faviD

A unique identifier by which the favourite list can be identified.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 233 (415)

String name

A descriptive name given to the favourite list.

7.13.13.2 Methods

Channel getChannel(String channellD)

Description Return the first channel in the favourite list with the specified channel identifier. Returns
null if no corresponding channel can be found.

Arguments channellD The channel identifier of the channel to be retrieved, which is a value as
defined for property ccid of the Channel object or a value as defined for
property ipBroadcastlD of the Channel object as defined in section
7.13.11.

Channel getChannelByTriplet(Integer onid, Integer tsid, Integer sid)

Description Return the first (IPTV or non-IPTV) channel in the list that matches the specified DVB or
ISDB triplet (original network ID, transport stream ID, service ID).

Where no channels of type ID_ISDB_* or ID_DVB_* are available, or no channel identified
by this triplet are found, this method SHALL return nul I.

Arguments onid The original network ID of the channel to be retrieved.

tsid The transport stream ID of the channel to be retrieved. If set to nul I the client
SHALL retrieve the channel defined by the combination of onid and sid. This
makes it possible to retrieve the correct channel also in case a remultiplexing took
place which led to a changed tsid.

sid The service ID of the channel to be retrieved.

Channel getChannelBySourcelD(Integer sourcelD)

Description Return the first (IPTV or non-IPTV) channel in the list with the specified ATSC source ID.

Where no channels of type ID_ATSC_* are available, or no channel with the specified
source ID is found in the channel list, this method SHALL return null.

Arguments sourcelD The ATSC source_ID of the channel to be returned.

7.13.13.3 Extensions to FavouriteList

If an OITF has indicated support for extended tuner control (i.e. by giving value true to element
<extendedAVControl> as specified in section 9.3.6 in its capability description), the OITF SHALL support the
following additional constants and methods on the FavouriteList object.

When the FavouritelList object is updated with new or removed channels it does not take effect until the object is
committed. Only after commi€() will the updates of a FavouriteList object become available to other DAE
applications.

The name property of the FavouriteList object SHALL be read/write for OITFs which are controlled by a service
provider. The following methods SHALL also be supported:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 234 (415)

Boolean insertBefore(Integer index, String ccid)

Description

Insert a new favourite into the favourites list at the specified index. In order to add a ccid at
the end of the favourite list the index shall be equal to 1ength. This method SHALL return
true of the operation succeeded, or false if an invalid index was specified (e.g. index >
(Iength)).

Arguments

index The index in the list before which the favourite should be inserted.

ccid The ccid of the channel to be added.

Boolean remove(Integer index)

Description Remove the item at the specified index from the favourites list. Returns true of the
operation succeeded, or false if an invalid index was specified.
Arguments index The index of the item to be removed.

Boolean commit()

Description

Commit any changes to the favourites list to persistent storage. This method SHALL return
true of the operation succeeded, or false if it failed (e.g. due to insufficient space to store
the list on the OITF).

If a server has indicated that it requires control of the tuner functionality of an OITF in the
server capability description for a particular service, then the OITF SHOULD send an
updated Client Channel Listing to the server using HTTP POST over TLS as described in
section 4.8.1.1.

7.13.14 Extensions to video/broadcast for channel scan

The section has been merged with the ChannelConTig class (see section 7.13.9 above).

7.13.15 The ChannelScanEvent class

The contents of this section have been merged with section 7.13.9.3 above.

7.13.16 The ChannelScanOptions class

The Channel ScanOptions class defines the options that should be applied during a channel scan operation. This
class does not define parameters for the channel scan itself.

7.13.16.1 Properties

Integer channelType

The types of channel that should be discovered during the scan. Valid values are TYPE_RADIO, TYPE_TV, or
TYPE_OTHER or TYPE_ALL as defined in section 7.13.11.1.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 235 (415)

Boolean replaceExisting

If true, any existing channels in the channel list managed by the OITF SHALL be removed and the new
channel list SHALL consist only of channels found during the channel scan operation. If false, any channels
discovered during the channel scan SHALL be added to the existing channel list.

7.13.17 The ChannelScanParameters class

This is an empty class that acts as the base interface for channel scan parameters specific to certain types of broadcast
network.

7.13.18 The DVBTChannelScanParameters class

The DVBTChanne lScanParameters class represents the parameters needed to perform a channel scan on a DVB-T or
DVB-T2 network. This class implements the interface defined by Channe lScanParameters, with the following
additions.

The properties that are undefined when performing startScan() are considered to be auto detected.

Integer startFrequency

The start frequency of the scan, in kHz.

Integer endFrequency

The end frequency of the scan, in kHz.

Integer raster

The raster size represented in kHz (typically 7000 or 8000).

String ofdm

The Orthogonal Frequency Division Multiplexing (OFDM) for the indicating frequency. Valid values are:

Value Description
MODE_1K OFDM mode 1K
MODE_2K OFDM mode 2K
MODE_4K OFDM mode 4K
MODE_8K OFDM mode 8K
MODE_16K OFDM mode 16K
MODE_32K OFDM mode 32K

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 236 (415)

Integer modulationModes

The modulation modes to be scanned. Valid values are:

Value Description
1 QPSK modulation
4 QAM16 modulation
8 QAM32 modulation
16 QAM64 modulation
32 QAM128 modulation
64 QAM256 modulation

More than one of these values may be ORed together in order to indicate that more than one modulation
mode should be scanned.

String bandwidth

The expected bandwidth. Valid values are:

Value Description
BAND_1.7MHZ 1.7 MHz bandwidth
BAND_5MHz 5 MHz bandwidth
BAND_6MHz 6 MHz bandwidth
BAND_7MHz 7 MHz bandwidth
BAND_8MHz 8 MHz bandwidth
BAND_10MHz 10 MHz bandwidth

7.13.19 The DVBSChannelScanParameters class

The DVBSChanne lScanParameters class represents the parameters needed to perform a channel scan on a DVB-S or
DVB-S2 network. This class implements the interface defined by ChannelScanParameters, with the following
additions.

The properties that are undefined when performing startScan() are considered to be auto detected.

7.13.19.1 Properties

Integer startFrequency

The start frequency of the scan, in kHz.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 237 (415)

Integer endFrequency

The end frequency of the scan, in kHz.

Integer modulationModes

The modulation modes to be scanned. Valid values are:

Value Description
1 QPSK modulation
2 8PSK modulation
4 QAM16 modulation

More than one of these values may be ORed together in order to indicate that more than one modulation
mode should be scanned.

String symbolRate

A comma-separated list of the symbol rates to be scanned, in symbols/sec.

Integer polarisation

The polarisation to be scanned. Valid values are:

Value Description
1 Horizontal polarisation
2 Vertical polarisation
4 Right-handed/clockwise circular polarisation
8 Left-handed/counter-clockwise circular polarization

More than one of these values may be ORed together in order to indicate that more than one polarisation
should be scanned.

String codeRate

The code rate, e.g. “3/4” or “5/6".

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 238 (415)

Number orbitalPosition

The orbitalPosition property is used to resolve DISEqC switch/motor. The value is the orbital position of
the satellite, negative value for west, positive value for east. For example, Astra 19.2 East would have
orbitalPosition 19.2. Thor 0.8 West would have orbitalPosition -0.8.

Integer networkld

The network ID of the network to be scanned, or undefined if all networks should be scanned.

7.13.20 The DVBCChannelScanParameters class

The DVBCChanne lScanParameters class represents the parameters needed to perform a channel scan on a DVB-C
or DVB-C2 network. This class implements the interface defined by Channel ScanParameters, with the following

additions.

The properties that are undefined when performing startScan() are considered to be auto detected.

7.13.20.1 Properties

Integer startFrequency

The start frequency of the scan, in kHz.

Integer endFrequency

The end frequency of the scan, in kHz.

Integer raster

The raster size represented in kHz (typically 7000 or 8000).

Boolean startNetworkScanOnNIT

The scan mode for scanning. A false value indicates to scan complete range, a true value indicates scan
terminates when a valid NIT is found. The frequency scan is replaced by a scan based on NIT. If networkld
is set and the value of this property is set to true the scan continues until there is a match on both.

Integer modulationModes

The modulation modes to be scanned. Valid values are:

Value Description
4 QAM16 modulation
8 QAM32 modulation

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 239 (415)

16 QAM64 modulation
32 QAM128 modulation
64 QAM256 modulation
128 QAM1024 modulation
256 QAM4096 modulation

More than one of these values may be ORed together in order to indicate that more than one modulation
mode should be scanned.

String symbolRate

A comma-separated list of the symbol rates to be scanned, in symbols/sec.

Integer networkld

The network ID of the network to be scanned, or undefined if all networks should be scanned.

7.13.21 Extensions to video/broadcast for synchronization

The OITF SHALL support the following additional methods on the video/broadcast object, in order to enable
synchronization to broadcast events.

void addStreamEventListener(String targetURL, String eventName,
EventListener listener)

Description Add a listener for the specified DSM-CC stream event.

Event triggers are carried in the stream as MPEG private data sections. For robustness, the
section describing a particular trigger may be repeated several times. Each section has a
version nhumber which is used to disambiguate a new trigger for the same event (which will
have a different version number) from a repeated instance of a previous trigger (which will
have the same version number).

When OITF detects a trigger corresponding to an event for which a listener has been
registered, a DOM StreamEvent SHALL be dispatched.

An event shall also be dispatched in case of error.
An OITF SHALL dispatch only one DOM StreamEvent per unigue trigger detected.
dispatched. A new trigger for the same event (i.e. an MPEG private data section for the

same event but with an updated version number) SHALL cause a new DOM StreamEvent
to be dispatched.

Arguments targetURL The URL of the DSM-CC StreamEvent object or the event description file
describing the event as defined in section 8.2 of [TS 102 809].

Repeated instances of the same trigger SHALL NOT cause a new DOM StreamEvent to be

subscribed to.

eventName The name of the event (in the DSM-CC StreamEvent object) that should be

listener The listener for the event.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 240 (415)

void removeStreameEventListener(String targetURL, String eventName,
EventListener listener)

Description Remove a stream event listener for the specified stream event name.

Arguments targetURL The URL of the DSM-CC StreamEvent object or the event description file
describing the event as defined in section 8.2 of [TS 102 809].

eventName The name of the event (in the DSM-CC StreamEvent object) whose
subscription should be removed.

listener The listener for the event.

7.13.21.1 The StreamEvent class

The StreamEvent class is a subclass of the DOM Event class which notifies an application that a synchronisation
trigger in a broadcast stream has been detected. This event also notifies an application when the event is no longer being
monitored.

Instances of this event are directly dispatched to the event target, and will not bubble nor capture.

readonly String eventName

The name of the stream event.

readonly String data

Data of the DSM-CC StreamEvent'’s event encoded in hexadecimal. For example: “0A10B81033” (for a
message 5 bytes long).

readonly String text

Text data of the DSM-CC StreamEvent’s event as a string, assuming UTF-8 as the encoding for the DSM-
CC StreamEvent’s event. Characters that cannot be transcoded SHALL be skipped.

readonly String status

The status of the event. Equal to “trigger” when the event is dispatched in response to a trigger in the
stream or “error” when an error occurred (e.g. attempting to add a listener for an event that does not exist,
or when a StreamEvent object with registered listeners is removed from the carousel).

An event SHALL be dispatched with an error status if:
e the StreamEvent object pointed to by targetURL is not found in the carousel or via broadband

e the StreamEvent object pointed to by targetURL does not contain the event specified by the
eventName parameter

e the carousel containing the event cannot be mounted

e the elementary stream which contains the StreamEvent event descriptor is no longer being
monitored (e.g. due to another monitoring request or because it disappears from the PMT)

e the event description file pointed to by targetURL is not available or does not have the correct

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 241 (415)

syntax.
Once an error is dispatched, the listener SHALL be automatically unregistered by the OITF.

7.13.22 The ATSCTChannelScanParameters class

The ATSCTChanne lScanParameters class represents the parameters needed to perform a channel scan on an ATSC-
T network. This class implements the interface defined by Channel ScanParameters, with the following additions.

The properties that are undefined when performing startScan() are considered to be auto detected.

7.13.22.1 Properties

Integer startFrequency

The start frequency of the scan, in kHz.

Integer endFrequency

The end frequency of the scan, in kHz.

Integer raster

The raster size represented in kHz, typically 6000 as this is the ATSC channel separation.

Integer modulationModes

The modulation modes to be scanned. Valid values are:

Value Description
2 2VSB
4 4VSB
8 8VSB
16 16VSB

More than one of these values may be arithmetically summed in order to indicate that more than one
modulation mode should be scanned.

7.14 Media playback APIs

This section specifies several extensions to the audio object and the video object defined in section 5.7.1 of [CEA-2014-
A]. It also contains a subsection (i.e. section 7.14.10) that defines the audio playback from memory API.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 242 (415)

7.14.1 The A/V Control object

NOTE: Most of the text in this section was found in Annex B of previous versions of this specification. It has been
moved here and re-structured for readability. No additional text has been included from CEA-2014-A.

The HTML object element (defined in section 4.8.4 of the HTMLS5 specification as referenced in [OIPF_DAE2_WEB])
SHALL support presentation of video and audio or just audio. This presentation SHALL be indicated by setting the type
attribute to one of the “video/” or “audio/” MIME types that is listed in section 3 of [OIPF_MEDIAZ2] and corresponds to
a combination of system layer format, video format and audio format that is supported by the OITF.

When an HTML object is presenting video or audio as defined in this section, the following requirements shall apply:

1. HTML objects presenting video and/or audio SHALL be accessible through the DOM and SHALL support the
properties and methods defined by the tables below in addition to those of HTMLOb jectElement as defined in the
HTMLS5 specification as referenced in [OIPF_DAE2_WEB].

Property type and name Property Definition

String data String data [RW] — media URL. If the value of data is
changed while media is playing playback is stopped (resulting
in a play state change). The default value is the empty string.
If the value of this attribute is changed, the related data-
attribute inside the DOM tree SHOULD be changed
accordingly. If the value of this attribute is set to an empty
string or is changed, the resources (files, server connections,
etc...) currently owned by the object SHALL be released. The
value set in this property MAY include a temporal fragment
interval according to section 4.2.1 of [Media Fragments URI]
in which case the derived begin time and end time SHALL
serve as bounds for playback. The Normal Play Time format
SHALL be used. The begin time SHALL behave as start-of-
media and the end time SHALL behave as end-of-media. If
the value of temporal fragment interval is changed then there
will be no change in the play state unless the interval is
changed to period outside of the current play position.

readonly Number The play position in number of milliseconds since the
playPosition beginning as denoted by the server (i.e. in relation to NPT 0.0
as described in section 3.6 of [RFC2326]) of the media
referenced by attribute data when data refers to a single
media item. If the play position cannot be determined, the
playPosition SHALL be undefined..

readonly Number playTime The estimated total duration in milliseconds of the media
referenced by data when data refers to a single media item. If
the duration of the media cannot be determined, the playTime
SHALL be undefined.

readonly Number playState Indication of the current play state as follows:

0 - stopped; user (or script) has stopped playback of the
current media, or playback has not yet started.

1 - playing; the current media pointed to by data is currently
playing.

2 - paused; the current media pointed to by data has been
paused.

3 - connecting; connect to media server, i.e. waiting for
connection to media server to be established, upon first
connection or after the connection was lost. In addition, DRM

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 243 (415)

rights necessary for playback of protected content are also
retrieved during this state.

4 - buffering; the buffer is being filled in order to have
sufficient data available to initiate or continue playback. In
this state, playback is stalled due to insufficient data in the
buffer to continue playback. The player waits until sufficient
data has been buffered to continue playback. For video
objects, whilst being in this state, the player SHOULD show
the last completed video frame that was shown before
entering this state. This playstate is an intermediate state to
reach playState 1 (‘playing’). The OITF SHOULD buffer the
content in the background whilst in playState 2 (‘paused’).
However, this background buffering does not result into a
state change to state 4.

5 - finished; the playback of the current media has reached
the end of the media.

6 - error; an error occurred during media playback, preventing
the current media to start/continue playing.

readonly Number error

Error details; only significant if the value of playState equals
6:

0 - A/V format not supported.

1 - cannot connect to server or connection lost.
2 - unidentified error.

3 — insufficient resources.

4 — content corrupt or invalid.

5 — content not available.

6 — content not available at given position.

readonly Number speed

Play speed relative to real-time as defined by 5.7.1.f.6 of
[CEA-2014-A].

Object onPlayStateChange

DOM-0 event handler called when the value of the playState
property changes as defined by 5.7.1.f.9 of [CEA-2014-A].

Table 9: Properties of the A/V Control Object when the type attribute refers to video or audio

Property type and name

Property Definition

String width

The width of the area used for rendering the video object.
This property is only writable if property ful 1Screen has
value false. The effect of changes to width SHALL be in
accordance with requirement 5.7.1.c of [CEA-2014-A].

String height

The height of the area used for rendering the video object.
This property is only writable if property ful 1Screen has
value false. The effect of changes to height SHALL be in
accordance with requirement 5.7.1.c of [CEA-2014-A].

readonly Boolean fullScreen

Indicates whether an object presenting video is in full screen
mode or not - as defined in by 5.7.1.9.3 of [CEA-2014-A].

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 244 (415)

Object onFullScreenChange

DOM-0 event handler called when the value of fullScreen
changes as defined in by 5.7.1.9.4 of [CEA-2014-A].

Object onfocus

DOM-0 event handler called when the object gains focus as
defined by 5.7.1.9.7 of [CEA-2014-A].

Object onblur

DOM-0 event handler called when the object loses focus as
defined by 5.7.1.9.8 of [CEA-2014-A].

Table 10: Additional Properties of the A/V Control Object when the type attribute refers to video

Method signature

Method Definition

Boolean play(Number speed)

Plays the media referenced by data, starting at the current
play position denoted by playPosi tion, at the supported
speed closest to the value of attribute speed. Negative
speeds reverse playback. If no speed is specified, it defaults
to 1. A speed of 0 will pause playback. This method SHALL
always return true. If the playback reached the beginning of
the media at rewind playback speed, then the play state
SHALL be changed to 2 (‘paused’). A play speed event (see
section 7.14.3.2 of this specification) SHALL be generated
when the operation has completed, regardless of the new
play speed. If the play speed is not changed, the argument of
the event SHALL be set to the previous play speed.

Boolean stop()

Stops playback and resets the playPosition to 0 as
defined by 5.7.1.f.12 of [CEA-2014-A].

Boolean seek(Number pos)

If seek() is called while the player is in state 1 (“playing”),
then it sets the current play position (in milliseconds) to the
value of pos and MAY change play state to 4 (‘buffering’).

If the player is in state 2 (‘paused’), then the seek() method
seeks to the new position, but the play state and the
rendered image is not changed.

If the player is in states 0 (“stopped”), 5 (“finished”) or 6
(“error”), then the new play position SHALL be retained and
SHALL be used (if possible) as the starting position for
playing back the content item indicated by the data property
when the play () method is called. NOTE: changing the
content item resets the play position to the beginning of the
new content item.

If the player is in states 3 (“connecting”) or 4 (“buffering”) then
the seek() method seeks to the new play position and MAY
change play state to 3 (“connecting”).

If the new playback position is valid, the value of the
playPosition attribute SHALL be set to the new value
before this method returns.

Returns true if the method succeeded, and false
otherwise. A play position event (see section 7.14.3.2 of this
specification) will be generated when the operation has
completed, regardless of the success of the operation. If the
operation fails, the argument of the event SHALL be set to
the previous play position.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 245 (415)

Boolean setVolume(Number
volume) Al

Sets the audio volume as defined by 5.7.1.f.14 of [CEA-2014-

Table 11: Methods of the A/V Control Object when the type attribute refers to video or audio

Method signature

Method Definition

setFullScreen(Boolean fullscreen)

Sets the object to full screen mode or windowed
mode as defined by 5.7.1.9.5 of [CEA-2014-A].

focus()

Sets the input focus to this object as defined by
5.7.1.9.6 of [CEA-2014-A].

Table 12: Additional Methods of the A/V Control Object when the type attribute refers to video

2. Inaddition to the properties and methods listed above, the following table lists other requirements from CEA-2014-
A that SHALL also apply for the A/V Control object as defined in this section.

CEA-2014 Requirement

Summary

5.7.1.a.3 Indication of the initial aspect ratio of the video
content.

5.7.1.b.3 Access to both video and audio objects by
name/id through the HTMLDocument interface.

5.7.1.c Full-screen or windowed mode for video objects.

5.7.1d CSS properties that apply to video objects.

5.7.1.e CSS z-index, opacity and RGBA colour values.

NOTE: In this specification, the value of the
“<overlay>" element is never “none” and hence
z-index and opacity are required to be
supported.

Table 13: Additional applicable requirements from CEA-2014

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 246 (415)

7.14.1.1 State diagram for A/V Control objects
The following state transition diagram SHOULD be used for an A/V Control object:

stop()
or

data (or type) attribute
has changed
or
setSource()

6: error

0: stopped

O

stop()
or

has changed
or

—Q setSource()

data(or type) attribute

stop()
or

data(or type) attribute

The following clarifications apply:

5: finished

Figure 16: State diagram for embedded A/V Control objects (normative)

has changed
| or
Stzl?o play(0) setSource()
data(or type) attribute
has changed play(x), x<>0
or
setSource()
|
play(x) play(x), x<>0 Say) or
\/ Q k
or seek() seek()
. play(x), x<>0, lconnected
3: connecting 2: paused
N play(0)
connection
established
connectio play(x), x <> 0,
lost connected & !buffered
seek()
- \
Playback 4: buffering
error A L
play(0)
Buffer underrun
(e.g when seek() i Buffer above start play(0)
called) playback threshold or
playback reached start
I x<>0 of media during rewind
P ay(xgr X (i.e. speed < 0)
looping memory
N /QL audio
1: playing

—

~— play(x), x <>0,

connected & buffered
Play position reaches
end of media
play(x)

1. Adetailed description for all the states in this state diagram is given above in the definition of the playState

property.

2. If the value of the al locationMethod property is DYNAMIC_ALLOCATION the following SHALL apply:

a. Scarce resources for playback using the A/V Control object, such as the MPEG decoder, are claimed
during state 3 (‘connecting”), state 4 (‘buffering”) or during state transitions from state 3

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 247 (415)

10.
11.

12.

13.

(‘connecting’) to state 4 (‘buffering’), from state 4 (‘buffering”) to state 1 (‘playing’) or
from state O (‘stopped”’) or from state 3 (‘connecting’) to state 2 (‘paused’).

b. Ifatany point in time during playback the scarce resources are not available anymore, due to a
resource conflict, then the play state of the A/V Control object SHALL be setto 6 (‘error”) with a
detailed error code of 3 (“insufficient resources’).

c. Scarce resources for playback using the A/V Control object SHALL be released when state 6
(‘error”)or0 (‘stopped”) or 5 (“Finished”) are reached.

In addition, if the A/V Control object gets destroyed, e.g. because another URL is loaded into the containing window,
scarce resources claimed for playback using the A/V Control object SHALL be released, except in cases described
for the optional persist property of A/V Control objects.

When the data attribute and/or the type attribute of the HTMLOb jectElement representing the A/V Control
object is given a different value, the object SHALL go to state 0 (‘stopped’).

For playback of DRM protected content, the rights for playback are retrieved during state 3 (‘connecting’).

If the play position reaches the end of the available content the A/V Control object SHALL be set to state 5
(“Finished”) in addition to generating a playback speed change of zero.

If there is an attempt to play () with a speed in the positive direction (forward or > 0) and there is no content
available then the request fails.

If the play position reaches the beginning of the available content the A/V Control object SHALL be set to state 2
(‘paused?) in addition to generating a playback speed change of zero.

If there is an attempt to play () with a speed in the negative direction (rewind or < 0) and there is no content
available then the request fails.

If seek() is performed beyond the available content the request is rejected and the current playout is maintained.

When a A/V Control object stops being rendered as defined in section 10.1 of the HTML5 specification as
referenced by [OIPF_DAE2_WEB] an OITF MAY release scarce resources allocated for that object. Vice versa, an
AJV Control object which is not visible but is still being rendered SHALL still be decoding video if it is in the
playing state and any audio associated with the currently playing media will still be audible. State transitions caused
by calls to methods on the A/V Control object, or due to permanent or transient errors, will occur as shown above
regardless of the visibility of the object. Section 4.4.4 describes the effect on scarce resources when an A/\V Control
object is removed from the DOM tree.

NOTE: as implied by the text above, rendering state and visibility are not equivalent. This implies, just to give two
examples, that display : none will affect the object state while visibi lity:hidden will not. When an A/V
Control object is destroyed (e.g. by the A/V Control object being garbage collected, or because of a page transition
within the application), presentation of streamed audio or video shall be terminated.

When not presenting video, the A/V Control object SHALL be rendered as an opaque black rectangle.

7.14.1.2 Using an A/V Control object to play streaming content
If an A/V Control object is used to play streamed content using either RTSP or HTTP the OITF then the following holds:

1.

If play(0) is called in state 0 (‘stopped?), the A/V Control object SHALL automatically go to play state 2
(‘paused’). The necessary resources are secured and no external signalling is performed.

If play(0) is called in the connecting or buffering state, the A/V Control object SHALL automatically go to play
state 2 (‘paused’)

If play() is called in the paused state with an argument other than 0, the A/V Control object SHALL transition to
one of the following states as follows:

a. If there is no connection to the server, the A/V Control object SHALL transition to the connecting state.

b. Ifthere is a connection to the server but insufficient content is buffered to resume playback immediately, the
AJV Control object SHALL transition to the buffering state.

c. If there is a connection to the server and sufficient content is buffered to resume playback immediately, the A/V
Control object SHALL transition to the playing state.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 248 (415)

7.14.1.3 Using an A/V Control object to play downloaded content

If an A/V Control object is used to play content that has been downloaded and stored on the OITF (by using method
setSource() as defined in section 7.14.7) then the following holds:

1. if the download was triggered using registerDownloadURL or the download was triggered using a Content
Access Download Descriptor with <TransferType> value “playable_download” as defined in Annex E.1, then:

a. ifthe play() method is called before sufficient data has been download to initiate playback, then the play state
of the A/V Control object SHALL be set to 6 (‘error’) with a detailed error code of 5 (“content not available™).

2. if the downloaded content was triggered using a Content Access Download Descriptor with <TransferType> value
“full_download” as defined in Annex E.1, then:

a. ifthe play() method is called whilst the content is still downloading and has not yet successfully completed,
then the play state of the A/V Control object SHALL be set to 6 (“error’) with a detailed error code of 5
(“content not available™).

7.14.1.4 Using an A/V Control object to play recorded content

If an A/V Control object is used to play content that has been recorded or is being recorded on the OITF (by using
method setSource() as defined in section 7.14.7) then the following holds:

1. ifthe play() method is called before sufficient data has been recorded to initiate playback, then the play state of
the A/V Control object SHALL be set to 6 (‘error’) with a detailed error code of 5 (“content not available™).

7.14.1.5 Using the A/V Control object to play content fragments

If the OITF indicates support through the temporalClipping capability indicator (see section 9.3.22) for playing
content fragments then it SHALL support the Media Fragment URI [Media Fragments URI] according to section 8.3.1.

7.14.1.6 User Input and the A/V Control object
If an A/V Control object has input focus:

= The OITF SHALL not block execution of scripts of the document from which the focus was moved to the video
object, even when the video is playing full-screen and has input focus.

= The OITF SHALL NOT handle the VK_OK, VK_PLAY, VK_PAUSE, VK_PLAY_PAUSE, VK_STOP,
VK_FAST_FWD, VK_REWIND, VK_NEXT or VK_PREV keys.

7.14.2 Extensions to A/V Control object for playback through Content-
Access Streaming Descriptor

As specified in section 4.7.1, an OITF SHALL support setting up the A/V stream using the information provided by a
valid Content Access Streaming Descriptor referred to by the ‘data’ attribute. To this end, the OITF SHALL fetch the
Content Access Streaming Descriptor from the URL provided by the “data” attribute, after which the descriptor SHALL
be interpreted, resulting in an appropriate <ContentURL> to be selected (e.g. based on which DRM system the OITF
supports). The OITF SHALL then initiate a streaming CoD session to the selected <ContentURL>, after which playback
can be started when the play () method is invoked.

The OITF SHALL pass included DRM-information of the selected content and DRM system ID as part of the
<DRMControl Information> elements of a Content Access Streaming Descriptor to the DRM agent, if it supports a
DRM agent with a matching DRMSystemID as per section 9.3.10.

If the Content Access Streaming Descriptor is not valid according to the XML Schema and semantics as defined in
Annex E.2, the A/V Control object SHALL go to playState 6 (i.e. error), with error value 4, which is defined as
follows in addition to the error states identified by bullet 5 of [Req. 5.7.1.f] of CEA-2014-A:

4: content corrupt or invalid.

For more information about setting up the A/V stream based on a Content Access Streaming descriptor, see section 4.7.1,
section 8 and Annex D.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 249 (415)

7.14.3 Extensions to A/V Control object for trickmodes

7.14.3.1 Properties

The following additional properties SHALL be supported on the audio object and video object defined in section 5.7.1 of
[CEA-2014-A].

function onPlaySpeedChanged(Number speed)

The function that is called when the playback speed of the media changes.
The specified function is called with one argument, speed, which is defined as follows:
o Number speed — the playback speed of the media at the time the event was dispatched.

The behaviour of the A/V Control object when the end of media (or the end of the currently-available media)
is reached is defined in section 7.14.1.

function onPlayPositionChanged(Integer position)

The function that is called when change occurs in the play position of the media due to the use of trick play
functions.

The specified function is called with one argument, position, which is defined as follows:

e Integer position —the playback position of the media at the time the event was dispatched,
measured in milliseconds since the beginning of the referenced media as denoted by the server.

The behaviour of the A/V Control object when the end of media (or the end of the currently-available media)
is reached is defined in section 7.14.1.

readonly Number playSpeeds[]

Returns an ordered list of playback speeds, expressed as values relative to the normal playback speed (1.0),
at which the currently specified A/V content can be played (either through an CEA-2014 audio or video
object), or undefined if the supported playback speeds are not (yet) known.

function onplaySpeedsArrayChanged()

The function that is called when the playSpeeds array values have changed. An application that makes use
of the playSpeeds array needs to read the values of the playSpeeds property again.

readonly String oitfSourcelPAddress

The OITF source IP address for RTSP or HTTP signalling, as well as, the address where the RTSP stream is

expected to arrive. The information shall be available in “buffering”, “paused” or “playing” states.

readonly String oitfSourcePortAddress

The OITF Port Address where the RTSP stream is expected to arrive. The information shall be available in

“buffering’, “paused” or “playing” states.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 250 (415)

Boolean oitfNoRTSPSessionControl

When the oi tfNoRTSPSessionControl is set to true then the OITF SHALL NOT signal the RTSP
messages DESCRIBE, SETUP or TEARDOWN.

String oitfRTSPSessionld

The sessionld to be used by the A/V Control object when signalling RTSP. This property is only applicable
when property oi tFNoRTSPSessionControl is set to true.

7.14.3.2 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onPlaySpeedChanged PlaySpeedChanged Bubbles: No
Cancellable: No

Context Info: speed

onPlayPositionChanged PlayPositionChanged Bubbles: No
Cancellable: No

Context Info: position

onPlaySpeedsArrayChanged PlaySpeedsArrayChanged Bubbles: No
Cancellable: No

Context Info: None

Note: the DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications SHOULD
NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM event
handlers SHALL call the addEventListener () method on the A/V Control object itself. The third parameter of
addEventListener, i.e. “useCapture”, will be ignored.

7.14.4 Extensions to A/V Control object for playback of selected
components

To support the selection of specific A/V components for playback (e.g. a specific subtitle language, audio language, or
camera angle), the classes defined in sections 7.16.5.2 — 7.16.5.5 SHALL be supported and the constants, properties and
methods defined in section 7.16.5.1 SHALL be supported on the A/V Control object.

7.14.5 Extensions to A/V Control object for parental rating errors

For parental rating errors during playback of A/V content through the CEA-2014 A/V Control object (as defined in
section 5.7.1 of [CEA-2014-A]) an OITF SHALL support the following intrinsic event properties and corresponding
DOM events for the CEA-2014 A/V Control object.

function onParentalRatingChange(String contentlD,ParentalRatingCollection ratings,
String DRMSystemID, Boolean blocked)

The function that is called whenever the parental rating of the content being played inside the A/V Control
object changes.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 251 (415)

These events may occur at the start of a new content item, or during playback of a content item (e.g. during
playback of A/V streaming content).

The specified function is called with four arguments contentlD, ratings, DRMSystemlD, and blocked
which are defined as follows:

e String contentlD - the content ID to which the parental rating change applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of the
DRM system (i.e. in the case of Marlin BB it is the Marlin contentID, in the case of CSPG-CI+ the
value of this field is null). Otherwise, it MAY be null or undefined.

e ParentalRatingCollection ratings — the parental ratings of the currently playing content. The
ParentalRatingCol lection object is defined in section 7.9.

e String DRMSystemlD —the DRM System ID of the DRM system that generated the event as
defined by element DRMSystemID in section 3.3.2 of [OIPF_METAZ2]. The value SHALL be null if
the parental control is not enforced by a particular DRM system.

e Boolean blocked - flag indicating whether consumption of the content is blocked by the parental
control system as a result of the new parental rating value.

function onParentalRatingError(String contentlD, ParentalRatingCollection ratings,
String DRMSystemlID)

The function that is called when a parental rating error occurs during playback of A/V content inside the A/V
Control object, and is triggered whenever one or more parental ratings are discovered and none of them are
valid. A valid parental rating is defined as one which uses a parental rating scheme that is supported by the

OITF and which has a parental rating value that is supported by the OITF.

The specified function is called with three arguments contentlID, rating, and DRMSystemID which are
defined as follows:

e String contentlD - the content ID to which the parental rating error applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of the
DRM system (i.e. in the case of Marlin BB it is the Marlin contentID, in the case of CSPG-CI+ the
value of this field is nul). Otherwise, it MAY be null or undefined.

e ParentalRatingCollection ratings — the parental rating value of the currently playing content.
The ParentalRatingCollection object is defined in section 7.9.5.

e String DRMSystemlD — optional argument that specifies the DRM System ID of the DRM system
that generated the event as defined by element DRMSystemID in section 3.3.2 of [OIPF_METAZ2].
The value SHALL be null if the parental control is not enforced by a particular DRM system.

7.14.5.1 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onParentalRatingChange ParentalRatingChange Bubbles: No
Cancellable: No

Context Info: contentlD, ratings,
DRMSystemlD, blocked

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 252 (415)

onParentalRatingError ParentalRatingError Bubbles: No
Cancellable: No

Context Info: contentlID, ratings,
DRMSystemlD.

Note: the above DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. The applications that use
DOM event handlers SHALL call the addEventListener () method onthe CEA-2014 A/V embedded object. The
third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.6 Extensions to A/V Control object for DRM rights errors

This section SHALL apply to OITF and/or server devices which have indicated support for DRM protection by providing
one or more <drm> elements as specified in section 9.3.10:

For notifying JavaScript about DRM licensing errors during playback of DRM protected A/V content through the CEA-
2014 A/V Control object (as defined by as defined in section 5.7.1 of CEA-2014-A) an OITF SHALL support the
following intrinsic event property and corresponding DOM event, for the CEA-2014 A/V Control object.

function onDRMRightsError(Integer errorState, String contentlD, String DRMSystemliD,
String rightslssuerURL)

The function that is called:

e Whenever a rights error occurs for the A/V content (no license, license invalid), which has led to
blocking consumption of the content.

e Whenever a rights change occurs for the A/V content (license valid), which leads to unblocking the
consumption of the content.

This may occur during playback, recording or timeshifting of DRM protected AV content.

The specified function is called with four arguments errorState, contentlD, DRMSystemlID and
rightslssuerURL which are defined as follows:

e Integer errorState — error code detailing the type of error:

0: no license, consumption of the content is blocked
1: invalid license, consumption of the content is blocked
2: valid license, consumption of the content is unblocked

e String contentlD - the unique identifier of the protected content in the scope of the DRM system
that raises the error (i.e. in the case of Marlin BB it is the Marlin contentID, in the case of CSPG-Cl+
the value of this field is null).

e String DRMSystemlID — DRMSystemID as defined by element DRMSystemlD in Table 9 of section
3.3.2 of [OIPF_METAZ2]. For example, for Marlin, the DRMSystemID value is
“urn:dvb:casystemid:19188".

e String rightslssuerURL — optional element indicating the value of the rightsissuerURL that can
be used to non-silently obtain the rights for the content item currently being played for which this
DRM error is generated, in cases whereby the rightsissuerURL is known. Cases whereby the
rightsissuerURL is known include cases whereby the rightsissuerURL has been extracted from the
MPEG2_TS of the protected content, retrieved from the SD&S discovery record or from the
associated BCG metadata. The corresponding rightsissuerURL fields are defined in section 4.1.3.4
of [OIPF_CSP2] and in section 3.3.2 of [OIPF_META2] respectively. If different URLs are retrieved
from the stream and the metadata, then the conflict resolution is implementation-dependent.

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 253 (415)

Intrinsic event Corresponding DOM event DOM Event properties

onDRMRightsError DRMRightsError Bubbles: No

Cancellable: No

Context Info: errorState, contentliD,
DRMSystemlD, rightslssuerURL

Note: the above DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DRMRightsError event during the bubbling or the capturing phase. Applications
that use DOM event handlers SHALL call the addEventListener () method onthe CEA-2014 A/V Control object.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.7

Extensions to A/V Control object for playing media objects

OITFs that support the API defined in sections 7.12, 7.4.6 and 7.4 SHALL support playback of downloaded and / or
recorded content as follows:

1. Firstly, by setting the data attribute of the A/V Control object to that returned from the uri property of the
Download or Recording object to be played back.

2. Using the method defined below on the A/V Control object which SHALL be supported if any of the APIs
defined in those sections are supported.

3. where the HTML5 media elements are supported (see section 9.3.17), by setting the src attribute of a <video>
element to that returned from the uri property of the Download or Recording object to be played back.

Boolean setSource(String id)

Description

Change the content item to be played by the A/V Control object to the content item
represented by id. Valid IDs include:

e Download identifiers (i.e. corresponding to property Download. id)
e Recording identifiers (i.e. corresponding to property Recording. id)
e CODAsset identifiers (i.e. corresponding to property CODAsset.uid)

Support for each of these identifier types depends on the support for the individual sections
in which they are defined.

Depending on the type of content for id, the following semantics apply:

If id is a download identifier, the OITF SHALL change the content item to be played to the
downloaded item, or item being downloaded, for which the Download. id property (as
defined in section 7.4.4.1) corresponds to the given download identifier. The type attribute
of the A/V Control object SHOULD change to the MIME type of the content item
represented by the download identifier, or the MIME type of the content item corresponding
to the first content item listed in the Content Access Download Descriptor in case the
download identifier represents a download of a Content Access Download Descriptor that
contains multiple <Contentltem> elements. The data attribute SHALL change to the
same value as the download identifier. Section 7.14.1.5 defines more details about
playback of downloaded content, and how it relates to the states of the A/V Control object.

If id is a recording identifier, the OITF SHALL change the content item to be played to the
recorded item, or item being recorded, for which the Recording. id property (as defined in
section 7.10.5.1) corresponds to the given recording identifier. The type attribute of the
A/V Control object SHOULD change to the MIME type of the format in which the content
was recorded. The data attribute SHALL change to the same value as the recording
identifier.

If id is a COD asset identifier, the OITF SHALL change the content item to be played to the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 254 (415)

CODAsset, for which the CODAsset.uid property (as defined in section 7.5.6.1)
corresponds to the given COD asset identifier. The type attribute of the A/V Control object
SHOULD change to the MIME type of the COD Asset. The data attribute SHALL change to
the same value as to COD asset identifier.

If the content item represented by id can be accepted by the A/V Control object for
playback, the method returns true. The method returns false if the item cannot be
accepted for playback.

Arguments id The ID of the item to be played.

7.14.8 Extensions to A/V Control object for Ul feedback of buffering
A/V content

If an OITF has indicated support for playback control as defined in section 9.3.21 in its capability description, the A/V
Control object defined in section 5.7.1 of [CEA-2014-A] SHALL support the properties and methods defined in this
section as follows;

= |f the type attribute of the <playbackControl> element includes “buffering” then onReadyToPlay,
readyToPlay, supportedStrategies, getAvailablePlayTime and setBufferingStrategy
SHALL be supported.

= If the type attribute of the <playbackControl> element includes “has” then onRepresentationChange,
onPeriodChange, avai lableRepresentationsBandwidth, currentRepresentation,
maxRepresentation, minRepresentation and setRepresentationStrategy SHALL be
supported.

= If the type attribute of the <playbackControl> element includes “dash” then
onRepresentationChange, onPeriodChange, avai lableRepresentationsBandwidth,
currentRepresentation, maxRepresentation, minRepresentation,
setRepresentationStrategy, availableRepresentationlds and currentRepresentationld
SHALL be supported

7.14.8.1 Properties

Boolean readyToPlay

Property that can be used to inspect whether or not enough (as determined by the OITF) of the media after
the current play position has been buffered to start playback.

Returns true if enough data has been buffered. Returns false if not enough data has been buffered.

function onReadyToPlay()

The function that gets called when enough (as determined by the OITF) of the media after the current play
position has been buffered to start/continue playback.

This event SHALL be generated whenever there is a state transition between state 4 (“buffering”) and
state 1 (“playing”). The event SHALL also be generated at the moment that enough data has been buffered
to start playback, whilst in state 2 (‘paused”).

function onRepresentationChange(Integer bandwidth, Integer position, String id)

When a HAS stream is being presented the function that SHALL be called when the stream changes
Representation and the bandwidth is modified. The bandwidth relates to the bandwidth attribute in the
Representation element of HTTP Adaptive Streaming manifest.

The stream change relates to presentation changes and not necessarily how the stream is buffered. Note
that multiple streams representing different qualities may be buffered and therefore is unreliable to indicate

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 255 (415)

bandwidth change.

The specified function SHALL be called with two arguments bandwidth and position which are defined as
follows:

e Integer bandwidth —the bandwidth associated with the new Representation. The unit used to
represent bandwidth is the same as the bandwidth attribute in the manifest (i.e. bits per second

(bps)).
e Integer position —the position at which the transition to the new list of Representations

associated with the new Period occurs. This should be in advance of the current play position but
may not be.

e String id - the identifier of the new Representation. This identifier SHALL be provided if the MPD
includes an “id” attribute on the representation.

function onPeriodChange(IntegerCollection bandwidths, Integer position,
StringCollection ids)

When a HAS stream or a DASH stream is being presented the function that SHALL be called immediately
when a new manifest for a new Period is loaded AND the Representations and associated bandwidth are
different to the current manifest. The bandwidth relates to the bandwidth attribute in the Representation
element of the manifest.

Note this should allow for an application to influence the buffering strategy before the position is reached but
it not guaranteed. In which case the buffering strategy may take effect after presentation of the new Period
has been initiated. When the function is called it should be possible to modify the selected max and min
Representation.

The specified function is called with two arguments bandwidths and position which are defined as follows:
e IntegerCollection bandwidths — the list of bandwidths associated with the new Period.

e Integer position - the position at which the transition to a new Representation occurs. This
should be in advance of the current playPosition but may not be.

e StringCollection ids — These identifiers SHALL be provided if the MPD includes an “id”
attribute on the representation.

readonly IntegerCollection availableRepresentationsBandwidth

When a HAS stream or a DASH stream is being presented, return an ordered list of the available
Representations. Each Representation SHALL be identified by its respective bandwidth. Each
Representation is identified by the bandwidth attribute in the Representation element of the MPD (as defined
in [OIPF_HAS2] or [DASH]).

readonly StringCollection availableRepresentationlds

If a stream is being presented that is described by an MPD and the MPD includes an id attribute on the
representation then return an ordered list of the available Representations identified by the id. If the MPD
does not include this attribute or if the player is a state other than play state 1 (‘playing’) then the value
SHALL be undefined.

readonly Integer currentRepresentation

When a HAS stream or DASH stream is being presented return Representation that is being presented. The
Representation is identified by the bandwidth attribute in the Representation element of the MPD (as defined

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 256 (415)

in [OIPF_HAS2] or [DASH]). The bandwidth is only available in play state 1 (‘playing’), in other states the
value is undefined.

readonly String currentRepresentationld

If a stream is being presented that is described by an MPD and the MPD includes an id attribute on the
representation then return the id of the Representation that is being presented. If any other type of stream is
being presented or if the player is in a state other than play state 1 (‘playing’) then the value is undefined.

readonly Integer maxRepresentation

Returns the maximum supported bandwidth from the avai lableRepresentationsBandwidth property.
Note that calling the setRepresentationStrategy() method may modify the maximum bandwidth.

readonly Integer minRepresentation

Returns the minimum supported bandwidth from the avai lableRepresentationsBandwidth property.
Note that calling the setRepresentationStrategy() method may modify the minimum bandwidth.

readonly StringCollection supportedStrategies

The list of the supported buffering strategies. The supported strategy names are listed below. Note that other
strategies may be supported.

e ‘“sustained_playback”: if this strategy is supported then the method setBufferingStrategy()
SHALL be supported with this strategy.

e “low_latency”: if this strategy is supported then the method setBufferingStrategy() SHALL be
supported with this strategy.

e ‘“representation_strategy”: if this strategy is supported then the method
setRepresentationStrategy() SHALL be supported.

7.14.8.2 Methods

Integer getAvailablePlayTime(Boolean fromPlayPosition)

Description Returns how much content is available for playback.

If argument fromPlayPosition has value true, this method returns an estimate of how
much data in milliseconds is available in the buffer for play back after the current play
position.

If argument fromPlayPosition has value false, this method returns an estimate of the
total buffer length in milliseconds (i.e. this includes all data available in the buffer before and
after the current play position).

Arguments fromPlayPosition Indicates whether the available play time should be calculated
from the current play position onwards, or from the start of the
buffer.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 257 (415)

Boolean setBufferingStrategy(String name)

Description

Request to change the buffering strategy to that given by name.
This method can be called during any play state, including play state 1 (‘playing’).

This method returns true if the buffering strategy has been successfully changed to the
preferred buffering strategy. The method returns false if the buffering strategy has not been
successfully changed.

If the OITF does not distinguish between the two modes, the method returns false.

Arguments

name The name of the requested buffering strategy. Valid values include:

“sustained_playback”: this is the default strategy, whereby the
incoming video stream should be rendered with as little hickups or lost
frames as possible. This means that the buffering threshold for triggering
an onReadyToPlay event is chosen to be sufficiently large to deal with
variations in network throughput.

“low_latency”: this is a strategy whereby the incoming video stream
should be rendered with an as low as possible latency between receiving
the content and the actual playback of the content. This means that
buffering threshold for triggering an onReadyToP lay event needs to be
made sufficiently small in order to playback the content as soon as
possible after it has been received.

These values are not case sensitive. The default strategy if the method is
not called is “sustained_playback”.

Boolean setRepresentationStrategy(Integer maxBandwidth, Integer minBandwidth,

Integer position)

Description

Request to change the strategy for selecting which Representation to use from the specified
position for HTTP Adaptive Streaming or MPEG DASH. The indicated bandwidth represents
the maximum and minimum bandwidth to be allowed. Representations outside of the upper
and lower limits SHALL NOT be selected. If data has already been fetched outside these
limits then there is no requirement to discard that data.

This method can be called during any play state, including play state 1 (‘playing’). Only one
change in strategy is in effect and any previous strategy that has not taken effect is
overwritten. This method returns true if the strategy has been successfully changed. The
method returns false if the buffering strategy has not been successfully changed.

The value of maxBandwidth shall be greater than minBandwidth otherwise the method
shall return false. The range between the bandwidth from maxBandwidth and
minBandwidth shall allow for at least one of the values from property
availableRepresentations otherwise the method shall return false.

If the Period changes and no Representations remain that are within the set Representation
strategy then the maxBandwidth and minBandwidth SHALL be reset to undefined. In
order to avoid this from occurring the max and/or min bandwidth have to be immediately
modified when the onPeriodChange function is called.

Arguments

maxBandwidth The maximum bandwidth allowed for the presentation of adaptive
content. If value set to undefined the limit is set by the OITF.

minBandwidth The minimum bandwidth allowed for the presentation of adaptive
content. If value set to undefined the limit is set by the OITF.

position This argument is optional. If present it indicates the position at which
the new Representation strategy shall be applied. The position should

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 258 (415)

be the same as the position returned in onPeriodChange() to make
for a smooth transition to a new strategy.

7.14.8.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onReadyToPlay ReadyToPlay Bubbles: No
Cancellable: No

Context Info: None

onRepresentationChange RepresentationChange Bubbles: No
Cancellable: No

Context Info: bandwidth, position

onPeriodChange PeriodChange Bubbles: No
Cancellable: No

Context Info: bandwidths, position

Note: these DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM
event handlers SHALL call the addEventListener () method onthe CEA-2014 A/V Control object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.9 DOM events for A/V Control object

To make the A/V Control object as defined in CEA-2014-A in line with the other scripting objects in section 7 of this
specification, for the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM event DOM Event properties

onfocus focus (as defined in section 5.2.1.2 of Bubbles: No
the DOM Level 3 Events specification as Cancellable: No
referenced in [OIPF_DAE2_WEB]) '

Context Info: None

onblur blur (as defined in section 5.2.1.2 of Bubbles: No
the DOM Level 3 Events specification as Cancellable: No
referenced in [OIPF_DAE2_WEB]) '

Context Info: None

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 259 (415)

onPlayStateChange PlayStateChange Bubbles: No

Cancellable: No

Context Info: None

onFullScreenChange FullScreenChange Bubbles: No

Cancellable: No

Context Info: None

Note: these DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM
event handlers SHALL call the addEventListener () method on the CEA-2014 A/V Control object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

When handling PlayStateChange events, since the property "playState" of the A/V Control object always returns
the current play state, there are a number of considerations:

= When accessing the playState property inside a PlayStateChange event handler, its value will be the
current state of the related media object that may be different from the state transition that caused the handler to
be called.

= The playState property may change value during the execution of the PlayStateChange event handler.

= For an A/V Control object there is no way to detect which state transition caused the event handler to be
executed.

7.14.10 Playback of memory audio

This section describes how an A/V Control object can be used for the playback of audio from memory.

7.14.10.1 Usage of CE-HTML tags

The A/V Control object SHALL be used to play audio clips from memory. The value of the A/V Control object’s type
attribute SHALL be set to one of the values defined in section 8.2.1 of [OIPF_MEDIAZ2]. The <object> element
representing the A/V Control object MAY contain <param> elements to set the value of parameters affecting the
playback of the clip, For audio from memory, valid parameters are:

= cache - avalue of “true” indicates that the audio clip should be played from memory. This parameter
SHALL be included for all clips to be played from memory. For formats which can not be played from
memory, or for values of the parameter other than “true”, this parameter SHALL have no effect. The default
value of this parameter SHALL be “false”.

= loop - indicates the number of times the audio clip SHALL be played when play() is called. The value
SHALL be positive integers or the string “infinite”, which SHALL play the audio clip continuously until
stop() is called or the data property is set to nul 1. The default value of this parameter SHALL be “1”.

Simultaneous playback of multiple audio clips from memory, or simultaneous playback of audio clips from memory and
streaming audio or video presentation SHALL follow the behaviour described in section 4.4.5.

7.14.10.2 Usage of the DOM interface
For A/V Control objects used to play audio from memory, the following properties and methods SHALL be supported:

= The properties data, playState, error and onPlayStateChange, as defined in Req. 5.7.1.f of [CEA-
2014-A].

= The methods play() and stop(), as defined in Req. 5.7.1.f of [CEA-2014-A].

When the play () method is called, if a <param> element as described above is present where the cache parameter is
set to the value “true”, the OITF SHALL:

= attempt to pre-load the audio clip specified by the value of its data property and play the audio clip from
memory. If the terminal cannot pre-load the audio clip due to insufficient memory, the terminal SHALL play
the clip as streaming audio.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 260 (415)

= attempt to retain the audio clip in its cache once playback has finished, until the A/V Control object’s data
property is modified or the A/V Control object is destroyed.

If the A/V Control object’s data property refers to a file in a format other than those listed in section 8.2.1 of
[OIPF_MEDIAZ2], the A/V Control object SHALL NOT attempt to play the file from memory.

The <param> element as defined in section 7.14.10.2 of this document SHALL be made accessible through a DOM
HTMLParamElement object.

7.14.10.3 Example usage (Informative)

The following HTML document shows an example of a script to start the playback of memory audio:

<head>

<écript type=""text/javascript'>
function startBGM() {
document.getElementByld("aidl™) .play(l);

</script>

</head>

<body>

<object type="audio/mp4" id="aidl" data="http://www.avsource.com/audio/bgm.aac">
<param name='‘cache' value=""true'"/>
<param name="loop" value="infinite"/>

</object>

<div id="btn1" onclick="startBGM()''></div>

</body>

The following HTML document shows an example of a script to stop the playback of memory audio:

<head>

<séript type=""text/javascript'>
function stopBGM() {
document.getElementByld("'aidl™) .stop();

</script>

</head>

<body>

<object type="audio/mp4" id="aidl" data="http://www.avsource.com/audio/bgm.aac">
<param name=''cache" value="true'/>

<param name="loop" value="infinite"/>

</object>

<div id="btn2" onclick="stopBGM()"'></div>

</Body>

7.14.11 Extensions to A/V Control object for media queuing

The following additional method SHALL be supported on the audio object and video object defined in section 5.7.1 of
[CEA-2014-A].

Boolean queue(String uri)

Description Queue the media referred to by uri for playback after the current media item has finished
playing. If a media item is already queued, uri will not be queued for playback and this
method will return false. If the item is queued successfully, this method returns true. If no
media is currently playing, the queued item will be played immediately.

If uri is null, any currently queued item will be removed from the queue and this method
will return true.

If an A/V Control object is an audio object as defined by section 5.7.1.b.1 of [CEA-2014-A]
then queued media items shall only contain audio. If an A/V Control object is a video object
as defined by section 5.7.1.b.2 of [CEA-2014-A] then queued media items shall always
contain video and may also contain audio and other media components. Applications
SHOULD ensure the value of uri refers to a media format appropriate to the instance of the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 261 (415)

A/V Control object. There are no requirements on queued media items apart from the
preceding ones. Specifically, there is no requirement for the MIME type of queued media
items to match the contents of the type attribute of the object element. If the value of the
type attribute differs from the MIME type of the queued media item, the MIME type SHALL
take precedence.

When the current media item has finished playing, the A/V Control object shall transition to
the finished state, update the value of the data property with the URL of the queued media
item and automatically start playback of the queued media item. The A/V Control object
MAY transition to the connecting or buffering states (and generate the necessary
PlayStateChange events) before entering the playing state when the queued media item is
being presented. Implementations may pre-buffer data from the queued URL before the
current media item has finished playing in order to reduce the delay between items.

If the queued media item can be played without transitioning to the connecting or buffering
states, then the A/V Control object SHALL generate a PlayStateChange event to the
playing state to indicate that the queued media item has started playing.

If playback of the current media item is stopped using the stop() method, or if the data
and/or type property is modified, the queued media item SHALL NOT be played and the
queued media item shall be discarded as if no item was queued.

Play speed is not affected by transitioning between the current and queued media item.

To avoid race conditions when queuing multiple items for playback, applications should wait
for the currently queued item to begin playback before queuing subsequent items, e.g. by
gueuing the subsequent item when the A/V Control object transitions to the connecting,
buffering or playing state for the currently queued item.

Arguments uri The media item to be queued, or nul I to remove the currently-queued item.

7.14.11.1 URI support and the queue method

All URIs that are supported by the OITF as the data property of the object element SHALL be supported as the uri
argument to the queue method. Further;

= URISs that directly reference a media item SHALL be supported both with and without a media fragment (as
defined in section 8.3.1).

= Using a URI referencing a content access streaming descriptor as the uri argument SHALL be supported. In
such a content access streaming descriptor, all URIs for non-local content (i.e. excluding local PVR and
Download) that are supported as the ur i argument to the queue () method SHALL be supported in the
<contentURL> element.

For example, an OITF supporting HTTP streaming and downloaded content but none of local PVR, HTTP adaptive
streaming or RTSP streaming will support the following as the uri element;

= HTTP URL directly referencing the complete media item (i.e. without a fragment)
= HTTP URL directly referencing part of the media item (i.e. with a media time fragment)

= HTTP URL referencing a content access streaming descriptor where the <contentURL> element is an HTTP
URL referencing the complete media item (i.e. without a fragment)

= HTTP URL referencing a content access streaming descriptor where the <contentURL> element is an HTTP
URL referencing part of the media item (i.e. with a media time fragment)

= Private URI directly identifying a complete downloaded content item (i.e. without a fragment)
= Private URI directly referencing part of a downloaded content item (i.e. with a fragment)

Further, the OITF SHALL support all combinations of all URIs that can be used as the uri argument with all URIs that
can be used as the data property of the object element.

7.14.11.2 Implementation Requirements on the Queue Method

When the queue method is used, once the last required data of the current content item has been read, the OITF SHALL
start reading from the queued content item without waiting for the last required data of the current content item to be

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 262 (415)

decoded and presented. If the current content item was identified by a URL without a fragment or with a fragment not
including an end time then the last required data is the last data of the content item. If the current content item was
identified by a URL with a fragment including an end time then the last required data is the last data needed to decode
and present the frame corresponding to that end time.

7.14.12 Extensions to A/V Control object for volume control

7.14.12.1 Methods

The following additional method SHALL be supported on the audio object and video object defined in section 5.7.1 of
[CEA-2014-A].

Integer getVolume()

Description Returns the actual volume level set; for systems that do not support individual volume
control of players, this method will have no effect and will always return 100.

7.14.13 Extensions to A/V Control object for resource management

This section defines APIs related to resource capabilities allocated to the A/V Control object.

7.14.13.1 Constants

Name Value Use
STATIC_ALLOCATION 1 Scarce resources are allocated at instantiation time
DYNAMIC_ALLOCATION 2 Scarce resources are allocated to the object as required

7.14.13.2 Properties

readonly StringCollection playerCapabilities

The list of media formats that are supported by the object. Each item SHALL contain a format label according
to [OIPF_MEDIAZ2].

If scarce resources are not claimed by the object, the value of this property SHALL be null.

readonly Integer allocationMethod

Returns the resource allocation method currently in use by the object. Valid values as defined in section
7.14.13.1 are:

e STATIC_ALLOCATION
e DYNAMIC_ALLOCATION

7.15 Miscellaneous APIs

7.15.1 The application/oipfMDTF embedded object

If an OITF has indicated support for the multicast delivery terminating function (MDTF) (i.e., <mdtf>true</mdtf>)
as defined in section 9.3.15 in its capability description, the OITF SHALL support MDTF through the use of the
following non-visual object:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 263 (415)

<object type="application/oipfMDTF" />
The MDTF API provides the necessary JavaScript methods to indicate to the MDTF what FLUTE multicast channel it
should join, and what tags it should listen for on those channels.

7.15.1.1 Properties

function onFLUTEListenerResult(String multicastAddress, Integer resultMsg)

This function is called with return result from the methods addFLUTEListener and removeFLUTEListener.

The specified script function is called with two arguments — mul ticastAddress and resultMsg.

e String multicastAddress — The multicast address associated with the callback.

e Integer resultMsg - result message. Valid values include:

Result Description Semantics
message
0 Successful The action performed by the underlying functionality
was successful.
1 Unknown error The action performed by the underlying functionality
failed because an unspecified error occurred.
2 Invalid multicast The multicast address is not valid, e.g. bad syntax or
address out of range.
3 Multicast address The multicast address does not exist in the listener
does not exist table.
4 No resources There was not enough resources in the OITF to join
the multicast address (only valid for
addFLUTEListener()).

7.15.1.2 Methods

void addFLUTEListener(String multicastAddress)

Description This method adds a FLUTE channel listener in the OITF.
The result from this method is sent to the callback method onFLUTEL istenerResult.
Arguments multicastAddress The multicast address that the OITF should join in order to listen.

void addFLUTEListenerTags(String multicastAddress, String tags,
function downloadCal IBack)

Description This method adds tags that the FLUTE listener should listen for.
The result from this method is sent to the callback method onFLUTEL istenerResult.
Arguments multicastAddress The multicast address that the OITF should join in order to listen.

tags

A comma separated list of tags that the OITF should listen for on the
FLUTE channel.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 264 (415)

downloadCallback Optional. This callback function is called when an object has been
downloaded. The arguments to this function are the Content Location
URI of the downloaded object and the Content-Type.

StringCollection getFLUTEListeners()

Description Returns a collection of multicast addresses for the FLUTE channels that the OITF listens to.

String getTags(String multicastAddress)

Description Returns a comma-separated list of the tags associated with a particular multicast address.

void removeFLUTEListener(String multicastAddress)

Description Removes the associated listener.

The result from this method is sent to the callback method onFLUTEListenerResult.

Arguments multicastAddress The multicast address that the OITF should leave.

7.15.1.3 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following
manner:

Intrinsic event Corresponding DOM event DOM Event properties

onFLUTEListenerResult FLUTEListenerResult Bubbles: No

Cancellable: No

Context Info: multicastAddress,
resultMsg

NOTE: the above DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a FLUTEL istenerResul t event during the bubbling or the capturing phase.
Applications that use DOM event handlers SHALL call the addEventListener () method on the
application/oipfMDTF object. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.15.2 The application/oipfStatusView embedded object

7.15.2.1 Overview of download status

The following embedded objects allow a visualization of the native download manager to be included as part of the Ul
coming from a (third party) server, without the need for any security model, and without compromising security and
privacy.

An OITF SHALL support the application/oipfStatusView embedded object. This is a visual object that can be
included in a HTML document, and is subject to the following CSS properties: width, height, position, float,
top, left, right, bottom, vertical-align, padding, and padding-* properties, margin, and margin-*
properties, border, and border-=* properties, visibi lity, and display. This embedded object SHALL provide an
overall consistent graphical view of the status of the current downloads, the content that has been downloaded, and/or the
content that has been recorded, as denoted by the states:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 265 (415)

= “list_of recent_downloads”: shows the progress of the most recently started downloads, with the amount of
items shown as specified by a <param> element with the name “nritems”.

= “list_of downloaded_content”: shows the list of items that have been successfully downloaded, with the amount
of items shown as specified by a <param> element with the name “nritems”.

The object SHALL support a <param> element with the name “state”, which indicates the state that SHALL be
visualized inside the object. An OITF that has indicated support for downloading content in its capability description (i.e.
<download>true</download>) SHALL at least support the monitor states “list_of recent_downloads” and
“list_of_downloaded_content”. An OITF MAY support the visualization of additional states. An OITF SHALL silently
ignore a request to visualize a state that it does not support; if this results in no state information being visualized at all
(because the each <param> element with name state referred to a non-supported state), the
application/oipfStatusView object SHALL NOT be visualized and the object will have CSS width and
height values of 0.

The object SHALL support a <param> element with the name “nritems”, which indicates the number of items that
should be shown for the given state.

The object SHALL also support the inclusion of style hints through <param> elements. At least the “background-
color” and “font-size” style hints SHALL be supported using the syntax defined by CSS 2.1. An OITF MAY
support additional style hints in addition to “background-color” and “font-size”. Additional style hints SHALL also
follow the CSS 2.1 syntax. An OITF SHALL silently ignore any style hints that it does not support.

Next to these parameters, the object SHALL support methods “getMinimumltemWidth()” and
“getMinimumltemHeight()” as defined in section 7.15.2.1.1.

Example usage:

<object id="dl" type="application/oipfStatusView" width="200" height="100">
<param name=''state' value="list_of _recent_downloads'/>
<param name="nritems" value="2"/>
<param name="‘background-color" value="black"/>
<param name="font-size" value="16px"'/>
</object>

NOTE: this object is intended to allow services to link in to the privileged functionality of accessing privacy sensitive
download information, without the need for certificates and privileged access requests. In certain managed deployments
this may not be sufficient. The application/oipfDownloadManager API described in section 7.4.3 provides more
extensive APIs which provide JavaScript control for a service platform provider over such highly privileged
functionality.

7.15.2.1.1 Methods

Integer getMinimumltemWidth(String state)

Description Returns the minimum width needed for rendering the name, status and other data of the
downloaded items for the given state (e.g. “list_of recent_downloads”).

Arguments state The state for which the visualization is requested. This is one of the strings that
are defined for <param> element with the name “state” (e.g.
“list_of_recent_downloads”).

Integer getMinimumltemHeight(String state)

Description Returns the minimum height needed for rendering the name, status and other data of the
downloaded items for the given state (e.g. “list_of recent_downloads”).

Arguments state The state for which the visualization is requested. This is one of the strings that are
defined for <param> element with the name “state” (e.g.
“list_of_recent _downloads”).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 266 (415)

7.15.2.2 Overview of recordings

An OITF that has indicated support for control of its recording functionality by a server (i.e.,
<record>true</record>) SHALL support the appl ication/oipfStatusView embedded object defined in
section 7.15.2.1, for which it SHALL at least support the following additional monitor state:

= “list_of recorded_content”: shows the list of items that have been recorded or that are currently being recorded,
with the amount of items shown as specified by <param> element with the name “nritems”.

NOTE: this object is intended to allow services to link in to highly privileged functionality, without the need for
certificates and privileged access requests. In certain managed deployments this may not be sufficient. Therefore, section
7.10.4 defines more extensive APIs which provide JavaScript control for a service platform provider over such highly
privileged functionality.

7.15.3 The application/oipfCapabilities embedded object

The OITF SHALL support following non-visual embedded object with the mime type
“application/oipfCapabilities”.

7.15.3.1 Properties

readonly Document xmlCapabilities

Returns the OITF’s capability description as an XML Document object using the syntax as defined in Annex
F without using any namespace definitions.

readonly Number extraSDVideoDecodes

This property holds the number of possible additional decodes for SD video. Depending on the current usage
of system resources this value may vary. The value of this property is likely to change if an HD video is
started.

Adding an A/V Control object or video/broadcast object may still fail, even if extraSDVideoDecodes is
larger than 0. For A/V Control objects, in case of failure the play state for the A/V Control object shall be set
to 6 (‘error’) with a detailed error code of 3 (‘insufficient resources’). For video/broadcast objects,
in case of failure the play state of the video/broadcast object shall be set to 0 (‘'unrealized’) with a
detailed error code of 11 (‘insufficient resources’).

readonly Number extraHDVideoDecodes

This property holds the number of possible additional decodes for HD video. Depending on the current usage
of system resources this value may vary. The value of this property is likely to change if an SD video is
started.

Adding an A/V Control object or video/broadcast object may still fail, even if extraHDVideoDecodes is
larger than 0. For A/V Control objects, in case of failure the play state for the A/V Control object shall be set
to 6 (‘error’) with a detailed error code of 3 (‘insufficient resources’). For video/broadcast objects,
in case of failure the play state of the video/broadcast object shall be set to 0 (‘'unrealized’) with a
detailed error code of 11 (‘insufficient resources’).

7.15.3.2 Methods

Boolean hasCapability(String profileName)

Description Check if the OITF supports the passed capability.

Returns true if the OITF supports the passed capability, false otherwise.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 267 (415)

Arguments profileName An OIPF base Ul profile string or a Ul Profile name fragment string as
defined in section 9.2.

Examples of valid profileName: “O1TF_HD_UIPROF” or “+PVR".

7.15.4 The Navigator class
The navigator object is defined by the HTMLS5 specification as referenced by [OIPF_DAE2_WEB].

7.15.5 Debug print API

The following method is available on the script’s global object as defined in the HTMLS5 specification as referenced by
[OIPF_DAE2_WEB].

void debug(DOMString arg)

Description Let the application developer print debug information on the debug output (for example, a
console, a serial link or a file). The means to access this debug output is outside the scope
of this specification and implementation-dependent.

A line feed character SHALL NOT be inserted automatically at the end of the string by the
implementation.

Example:
debug("'[APP] value = " + value + "\n"'");

Arguments arg String to print on the debug output.

7.16 Shared Utility classes and features

7.16.1 Base collections
7.16.1.1 The StringCollection class

typedef Collection<String> StringCollection

The StringCollection class represents a collection of String objects. See Annex K for the definition of the
collection template.

7.16.1.2 The IntegerCollection class

typedef Collection<Integer> IntegerCollection

The IntegerCol lection class represents a collection of Integer values. See Annex K for the definition of the
collection template.

7.16.2 The Programme class
The Programme class represents an entry in a programme schedule.

Note: as described in the record(Programme programme) method of the
application/oipfRecordingScheduler object, only the programme ID property of the programme object is
used to determine the programme or series that will be recorded. The other properties are solely used for annotation of
the (scheduled) recording with programme metadata. The use of these metadata properties is optional. If such programme
metadata is provided, it is retained in the ScheduledRecording object that is returned if the recording of the
programme was scheduled successfully.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 268 (415)

7.16.2.1 Constants

Name Value Use

ID_TVA_CRID 0 Used in the programme IDType property to indicate that the programme
is identified by its TV-Anytime CRID (Content Reference Identifier).

1D_DVB_EVENT 1 Used in the programme IDType property to indicate that the programme
is identified by a DVB URL referencing a DVB-SI event as enabled by
section 4.1.3 of [OIPF_METAZ2]. OPTIONAL.

ID_TVA_GROUP_CRID 2 Used in the programme IDType property to indicate that the
Programme object represents a group of programmes identified by a
TV-Anytime group CRID.

7.16.2.2 Properties

String name

The short name of the programme, e.g. 'Star Trek: DS9'.

String longName

The long name of the programme, e.g. 'Star Trek: Deep Space Nine'. If the long name is not available, this
property will be undefined.

String description

The description of the programme, e.g. an episode synopsis. If no description is available, this property will
be undefined.

String longDescription

The long description of the programme. If no description is available, this property will be undefined.

Integer startTime

The start time of the programme, measured in seconds since midnight (GMT) on 1/1/1970.

Integer duration

The duration of the programme (in seconds).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 269 (415)

String channellD

The identifier of the channel from which the broadcasted content is to be recorded. Specifies either a ccid or
ipBroadcastID (as defined by the Channel object in section 7.13.11)

Integer episode

The episode number for the programme if it is part of a series. This property is undefined when the
programme is not part of a series or the information is not available.

Integer totalEpisodes

If the programme is part of a series, the total number of episodes in the series. This property is undefined
when the programme is not part of a series or the information is not available.

readonly Boolean is3D

Flag indicating whether the programme has 3D video.

String programmelD

The unique identifier of the programme or series, e.g., a TV-Anytime CRID (Content Reference ldentifier).

Integer programmelDType

The type of identification used to reference the programme, as indicated by one of the ID_* constants
defined above.

readonly String IMI

The TV-Anytime Instance Metadata ID for this programme.

readonly ParentalRatingCollection parentalRatings

A collection of parental rating values for the programme for zero or more parental rating schemes supported
by the OITF. For instances of the Programme class created by the createProgramme() method defined in
section 7.10.1.1, the initial value of this property (upon creation of the Programme object) is an instance of
the ParentalRatingCollection object (as defined in section 7.9.5) with length 0. Parental rating values
can be added to this empty readonly parental rating collection by using the addParentalRating() method
of the ParentalRatingCollection object. The ParentalRatingCollection is defined in section 7.9.5.
The related ParentalRating and ParentalRatingScheme objects are defined in section 7.9.4 and 7.9.2
respectively.

For instances of the Programme class returned through the metadata APIs defined in section 7.12 or through
the programmes property of the video/broadcast object defined in section 7.13.3, the initial value of this
property SHALL include the parental rating value(s) carried in the metadata or DVB-SI entry describing the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 270 (415)

programme, if this information is included.

Note that if the service provider specifies a certain parental rating (e.g. PG-13) through this property and the
actual parental rating extracted from the stream says that the content is rated PG-16, then the conflict
resolution is implementation dependent.

readonly StringCollection groupCRIDs

The group CRIDs associated with this programme.

7.16.2.3 Metadata extensions to Programme

The OITF SHALL extend the Programme class defined in section 7.16.2 with the properties and methods described
below.

This subsection SHALL apply for OITFs that have indicated <cl ientMetadata> with value “true” and a “type”
attribute with values “bcg”, “eit-pF” or “dvb-si” as defined in section 9.3.7 in their capability profile.

7.16.2.3.1 Properties

readonly Channel channel

Reference to the broadcast channel where the programme is available.

The value of this field is derived from the servicelDreT attribute of the Schedule element that refers to this
programme.

readonly Boolean blocked

Flag indicating whether the programme is blocked due to parental control settings or conditional access
restrictions.

The blocked and locked properties work together to provide a tri-state flag describing the status of a
programme. This can best be described by the following table:

Description blocked locked
No parental control applies. false false
Item is above the parental rating threshold (or manually blocked); no PIN has true true

been entered to view it and so the item cannot currently be viewed.

Item is above the parental rating threshold (or manually blocked); the PIN has true false
been entered and so the item can be viewed.

Invalid combination — OITFs SHALL NOT support this combination false true

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 271 (415)

Integer showType

Flag indicating the type of show (live, first run, rerun, etc,).

The value of this property is determined by the child elements of the programme’s BroadcastEvent or
ScheduleEvent element from the Program Location Table. Values are determined as follows:

Value Description

1 The programme is live; indicated by the presence of a Live element with
a value attribute set to true.

2 The programme is a first-run show; indicated by the presence of a
FirstShowing element with a value attribute set to true.

3 The programme is a rerun; indicated by the presence of a Repeat
element with a value attribute set to true.

If none of the above conditions are met, the default value of this field SHALL be 2.

Boolean subtitles

Flag indicating whether subtitles or closed-caption information is available.

This flag SHALL be true if one or more BCG CaptionLanguage elements are present in this programme’s
description, false otherwise.

Boolean isHD

Flag indicating whether the programme has high-definition video.

This flag SHALL be true if a VerticalSize element is present in the programme’s description and has a
value greater than 576, fal se otherwise.

Integer audioType

Bitfield indicating the type of audio that is available for the programme.

The value of this field is determined by the NumOfChannels elements in a programme’s A/V attributes.
Values are determined as follows:

Value Description

1 A mono audio stream is available (at least one
AVAttributes.AudioAttributes elementis present which has a child
NumOfChannels element whose value is 1).

2 A stereo audio stream is available (at least one
AVAttributes.AudioAttributes elementis present which has a child
NumOfChannels element whose value is 2).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 272 (415)

4 A multi-channel audio stream is available (at least one
AvAttributes._AudioAttributes element is present which has a child
NumOfChannels element whose value is greater than 2).

For programmes with multiple audio streams, these values may be ORed together.

Boolean isMultilingual

Flag indicating whether more than one audio language is available for the programme.

This flag SHALL be true if more than one BCG Language element is present in the programme’s
description, false otherwise.

StringCollection genre

A collection of genres that describe this programme.

The value of this field is the concatenation of the values of any Name elements that are children of Genre
elements in the programme’s description.

readonly Boolean hasRecording

Flag indicating whether the Programme has a recording associated with it (either scheduled, in progress, or
completed).

StringCollection audioLanguages

Supported audio languages, indicated by their ISO.639-2 language codes as defined in [ISO 639-2].

StringCollection subtitleLanguages

Supported subtitle languages, indicated by their 1ISO.639-2 language codes as defined in [ISO 639-2].

readonly Boolean locked

Flag indicating whether the current state of the parental control system prevents the programme from being
viewed (e.g. a correct parental control PIN has not been entered to allow the programme to be viewed).

7.16.2.3.2 Methods

String getField(String fieldld)

Description Get the value of the field referred to by fieldld that is contained in the metadata for this
programme. If the field does not exist, this method SHALL return undefined.

Arguments fieldld The name of the field whose value SHALL be retrieved.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 273 (415)

7.16.2.4 DVB-SI extensions to Programme

The following method SHALL be added to the Programme object, if the OITF has indicated support for accessing
DVB-SI information, by giving the value “true” to element <cl ientMetadata> and the value “dvb-si” or
“eit-pf” to the “type” attribute of that element as defined in section 9.3.7 in their capability profile.

StringCollection getSlDescriptors(Integer descriptorTag,

Integer descriptorTagExtension, Integer privateDataSpecifier)

Description

Get the contents of the descriptor specified by descriptorTag from the DVB SI EIT
programme's descriptor loop. If more than one descriptor with the specified tag is available for
the given programme, the contents of all matching descriptors SHALL be returned in the
order the descriptors are found in the stream.

The descriptor content bytes SHALL be encoded in a string whose characters shall be
restricted to the ISO Latin-1 character set. Each character in the string represents a byte of a
DVB-SI descriptor, such that a byte at position "i" in the descriptor is equal the Latin-1
character code of the character at position "i" in the string.

Described in the syntax of JavaScript: let desc[] be the byte array of a descriptor, in which
desc[0] is the descriptor_tag, then, the returned string (retval in the example below) is its
equivalent string, if :

desc. length==retval.length and
for each integer i : O<=i<desc.length holds
desc[i] == retval.charCodeAt(i).

If the descriptor specified by descriptorTag and (optionally) descriptorTagExtension
and privateDataSpeci fier does not exist, or if the metadata for this programme was
retrieved from a source other than DVB-SI, this method SHALL return nul I.

If metadata for this programme has not yet been retrieved, this method SHALL return
undefined. If the OITF supports the application/oipfSearchManager object as defined
in section 7.12.1, the OITF SHALL notify applications of the availability of additional metadata
via MetadataSearch events targeted at the application/oipfSearchManager object
used to retrieve the programme metadata.

Arguments

descriptorTag The descriptor tag as specified by [EN 300 468].

descriptorTagExtension An optional argument giving the descriptor tag extension as
specified by [EN 300 468]. This argument is mandatory when
descriptorTag is Ox7f and ignored in all other cases.

privateDataSpecifier An optional argument giving the private_data_specifier as
specified by [EN 300 468]. If this argument is present, only
descriptors related to the identified specifier will be returned.

7.16.2.5 Recording extensions to Programme

The OITF SHALL support the following extensions to the Programme class.

Clients supporting the recording management APIs defined in this section SHALL indicate this by adding the attribute
"manageRecordings" to the <recording> element with a value unequal to ‘none’ in the client capability
description as defined in section 9.3.3.

The functionality as described in this section is subject to the security model of section 10.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 274 (415)

readonly ScheduledRecording recording

If available, this property represents the recording associated with this programme (either scheduled, in-
progress or completed). Has value undefined if this programme has no scheduled recording associated with
it.

7.16.3 The ProgrammeCollection class

typedef Collection<Programme> ProgrammeCollection

The ProgrammeCol lection class represents a collection of Programme objects. See Annex K for the definition of
the collection template.

7.16.4 The Disclinfo class

The DisclInfo class provides details of the storage usage and capacity in the OITF.

A DisclInfo instance obtained from the oi pfDownloadManager provides reports relating to downloads. A DiscInfo
instance obtained from oipfRecordingScheduler provides reports relating to recordings. If recordings and
downloads use the same pool of storage space (e.g. disc partition), DiscInfo instances obtained via either route would
have the same values for the properties. If recordings and downloads use different pools of storage space (e.g. different
disc partitions) the Di scInfo instances obtained by each route would report the correct values for the route in which
they were obtained.

7.16.4.1 Properties

readonly Integer free

The space (in megabytes) available on the storage device.

readonly Integer total

The total capacity (in megabytes) of the storage device. Depending upon the system, free MAY be less than
total as some of the disc space MAY be used for management purposes.

readonly Integer reserved

The space (in megabytes) reserved.

7.16.5 Extensions for playback of selected media components
This section defines APIs for the selection of specific A/V components for playback.

NOTE: The term component may correspond to MPEG_2 components, but is not restricted to that.
7.16.5.1 Media playback extensions

7.16.5.1.1 Constants

The following constants are defined as properties on any objects implementing this section:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 275 (415)

Name Value Use

COMPONENT_TYPE_VIDEO 0 Represents a video component. This constant is used for
all video components regardless of encoding.

COMPONENT_TYPE_AUDIO 1 Represents an audio component. This constant is used for
all audio components regardless of encoding.

COMPONENT_TYPE_SUBTITLE 2 Represents a subtitle component. This constant is used for
all subtitle components regardless of subtitle format. NOTE:
A subtitle component may also be related to closed
captioning as part of a video stream.

7.16.5.1.2 Properties

function onSelectedComponentChanged(Integer componentType)

This function is called when there is a change in the set of components being presented. This may occur if
one of the currently selected components is no longer available and an alternative is chosen based on user
preferences, or when presentation has changed due to a different component or set of components being
selected.

OITFs MAY optimise event dispatch by dispatching a single event in response to several calls to
selectComponent() or unselectComponent() made in rapid succession.

The specified function is called with one argument:

e Integer componentType - The type of component whose presentation has changed, as
represented by one of the constant values listed in section 7.16.5.1.1. If more than one component
type has changed, this argument will take the value undefined.

7.16.5.1.3 Methods

AVComponentCollection getComponents(Integer componentType)

Description If the set of components is known, returns a collection of AVComponent values representing
the components of the specified type in the current stream. If componentType is set to null
or undefined then all components are returned if they are known.

For a video/broadcast object, the set of components SHALL be known if the
video/broadcast object is in the presenting state and MAY be known if the object is in other
states. For an A/V Control object, the set of components SHALL be known if the A/V Control
object is in the playing state and MAY be known if the object is in other states.

NOTE: In the case of broadcast MPEG-2 transport streams, this method returns in
formation from the PMT but the PMT is not always accurate. Components may be signalled
in the PMT which are not actually present all the time. Components may be present but
carrying information inconsistent with the PMT, for example a secondary audio stream may
be signalled but carrying a copy of the primary audio stream when content for the
secondary audio has not been produced. Applications can use the getSlIDescriptors()
method defined in section 7.16.2.4 to obtain descriptors from the EIT where these subtleties
are normally signalled. Exactly how they are “normally signalled” is generally market
specific.

One or more of the components returned MAY be passed back to one of the other methods
unchanged (e.g. selectComponent()).

If property preferredAudiolLanguage in the Configuration object (refer to section 7.3.2
is set then a component is by default selected and is considered as an active component.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 276 (415)

If property preferredSubtitleLanguage in the Configuration object (refer to section
7.3.2 is set and property subtitleEnabled in AVOutput class (refer to section 7.3.5.1) is
enabled then a component is by default selected and is considered as an active component.

Arguments

componentType The type of component to be returned , as represented by one of the
constant values listed in section 7.16.5.1.1.

AVComponentCollection getCurrentActiveComponents(Integer componentType)

Description

If the set of components is known, returns a collection of AVComponent values representing
the currently active components of the specified type that are being rendered. Otherwise
returns undefined.

For a video/broadcast object, the set of components SHALL be known if the
video/broadcast object is in the presenting state and MAY be known if the object is in other
states. For an A/V Control object, the set of components SHALL be known if the A/V Control
object is in the playing state and MAY be known if the object is in other states.

One or more of the components returned MAY be passed back to one of the other methods
unchanged (e.g. selectComponent()).

Arguments

componentType The type of currently active component to be returned. represented
by one of the constant values listed in section 7.16.5.1.1.

void selectComponent(AVComponent component)

Description Select the component that will be subsequently rendered when A/V playback starts or select
the component for rendering if A/V playback has already started.
If playback has started, this SHALL replace any other components of the same type that are
currently playing.
If property preferredAudiolLanguage in the Configuration object (refer to section 7.3.2) is
set then a component is by default selected and it is not necessary to perform
selectComponent().
If property preferredSubtitleLanguage in the Configuration object (refer to section
7.3.2) is set and property subtitleEnabled in AVOutput class (refer to section 7.3.5.1) is
enabled then a component is by default selected and it is not necessary to perform
selectComponent().

Arguments component A component object available in the stream currently being played.

void unselectComponent(AVComponent component)

Description

Stop rendering of the specified component of the stream.

If property preferredAudiolLanguage in the Configuration object (see section 7.3.2) is
set then unselecting a specific component returns to the default preferred audio language.

If property preferredSubtitleLanguage in the Configuration object (see section
7.3.2) is set and property subtitleEnabled in AVOutput class (see section 7.3.5.1) is
enabled then unselecting a specific component returns to the default preferred subtitle
language. In order to stop rendering subtitles completely it is necessary to disable subtitles
with property subtitleEnabled in AVOutput class.

Arguments

component The component to be stopped.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 277 (415)

void selectComponent(Integer componentType)

Description If A/V playback has already started, start rendering the default component of the specified
type in the current stream. This SHALL replace any other components of the same type
that are currently playing.

If A/V playback has not started, the default component of the specified type will be
subsequently rendered once playback does start.

Arguments componentType The type of component for which the default component should be
rendered.

void unselectComponent(Integer componentType)

Description If A/V playback has already started, stop rendering of the specified type of component. If
A/V playback has not started, no components of the specified type will be subsequently
rendered once playback does start.

Arguments componentType The type of component to be stopped.

7.16.5.1.4 Events

For the intrinsic event “onSelectedComponentChange”, corresponding DOM events SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM event DOM Event properties

onSelectedComponentChange SelectedComponentChange Bubbles: No

Cancellable: No

Context Info: componentType

Note: this DOM event is directly dispatched to the event target, and will not bubble nor capture. Applications SHOULD
NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM event
handlers SHALL call the addEventListener () method on the video/broadcast object or AV Control object
itself. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.16.5.2 The AVComponent class

AVComponent represents a component within a complete media stream - a single stream of video, audio or data that can
be played or manipulated. This is not necessary for basic playback, record or EPG services. However, it provides a
mechanism to get at extended streams for enhanced services.

For forward compatibility the DAE application SHALL check the value of the type property to ensure that it is
accessing an AVComponent object of the correct type.

7.16.5.2.1 Properties

readonly Integer componentTag

The component tag identifies a component. The component tag identifier corresponds to the component_tag
in the component descriptor in the ES loop of the stream in the PMT [EN 300 468], or undefined if the
component is not carried in an MPEG-2 TS.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 278 (415)

readonly Integer pid

The MPEG Program ID (PID) of the component in the MPEG2-TS in which it is carried, or undefined if the
component is not carried in an MPEG-2 TS.

readonly Integer type

Type of the component stream. Valid values for this field are given by the constants listed in section
7.16.5.1.1.

readonly String encoding

The encoding of the stream. The value of video format or audio format defined in section 3 of
[OIPF_MEDIA2] SHALL be used. For subtitle components, the following values are used (all according to
section 6 of [OIPF_MEDIAZ2]):

Value Description
DVB-SUBT DVB subtitles
EBU-SUBT EBU Teletext based subtitles
CEA-SUBT CEA-708C Closed Captions
3GPP-TT 3GPP Timed Text

readonly Boolean encrypted

Flag indicating whether the component is encrypted or not.

7.16.5.3 The AVVideoComponent class

The AVVideoComponent class implements the AVComponent interface.

7.16.5.3.1 Properties

readonly Number aspectRatio

Indicates the aspect ratio of the video or undefined if the aspect ratio is not known. Values SHALL be
equal to width divided by height, rounded to a float value with two decimals, e.g. 1.78 to indicate 16:9 and
1.33 to indicate 4:3.

7.16.5.4 The AVAudioComponent class

The AVAudioComponent class implements the AVComponent interface.

7.16.5.4.1 Properties

readonly String language

An ISO 639-2 language code representing the language of the stream, as defined in [ISO 639-2].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 279 (415)

readonly Boolean audioDescription

Has value true if the stream contains an audio description intended for people with a visual impairment, false
otherwise.

readonly Integer audioChannels

Indicates the number of channels present in this stream (e.g. 2 for stereo, 5 for 5.1, 7 for 7.1).

7.16.5.5 The AVSubtitleComponent class

The AVSubtitleComponent class implements the AVComponent interface.

7.16.5.5.1 Properties

readonly String language

An ISO 639-2 language code representing the language of the stream, as defined in [ISO 639-2].

readonly Boolean hearinglmpaired

Has value true if the stream is intended for the hearing-impaired (e.g. contains a written description of the
sound effects), false otherwise.

7.16.5.6 The AVComponentCollection class
typedef Collection<AVComponent> AVComponentCollection

An AvComponentCol lection represents a collection of AVComponent objects. See Annex K for the definition of
the collection template.

7.16.6 Additional support for protected content

The existing Download and Recording classes shall both be extended with two properties isEncrypted and
DRMSystemlds and one method getDRMPrivateData as follows.

readonly Boolean isEncrypted

Has value true if the content is protected by a DRM. or undefined if this information is not available to the
OITF. The mapping for different content formats is described in section 8.4.4.

readonly StringCollection DRMSystemlDs

StringCol lection object containing the names of the DRM system ID of the DRM protecting the content.
OIPF DRMSystemlID are defined in Table 9 of Section 3.3.2 of [OIPF_METAZ2]. The collection is empty if this
information is not available to the OITF. The mapping for different content formats is described in section
8.4.4.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 280 (415)

String getDRMPrivateData(String DRMSystemiD)

Description Gets the private opaque data in the protected content in the scope of the specified DRM
system.

The function returns the private data of the protected content in the scope of the DRM
system. The function returns undefined if this information is not available to the OITF or if
the content is not protected by the specified DRM. The mapping for different content
formats is described in section 8.4.4. The private data bytes SHALL be encoded in a string
whose characters shall be restricted to the ISO Latin-1 character set. Each character in the
string represents a byte of the private data, such that a byte at position "i" in the private data
is equal the Latin-1 character code of the character at position "i" in the string

Arguments DRMSystemID DRM system ID as defined by element DRMSystemlD in Table 9 of
section 3.3.2 of [OIPF_META2].

7.17 DLNA RUI Remote Control Function APIs
This section defines the APIs related to the DLNA RUI RCF.

The DLNA RUI RCF APIs provide the necessary JavaScript properties and methods for a DAE application to
communicate with Remote Control Devices and provide a Control Ul (i.e. one or more CE-HTML documents that enable
the DAE application to be controlled from the Remote Control Device) on such devices. Using these APIs, Remote
Control Devices can:

= obtain a Control Ul from the OITF or the IPTV Applications server via the OITF,
= send information such as control messages to the OITF and
= receive information from the OITF.

This section SHALL apply for OITFs that have indicated <remoteControlFunction> with value “true” as defined
in section 9.3.17 in its capability description.

7.17.1 The application/oipfRemoteControlFunction embedded object

OITFs that have indicated <remoteControlFunction> with value “true” SHALL support the DLNA RUI RCF
APIs through the use of the following non-visual embedded object:

<object type="application/oipfRemoteControlFunction"/>

7.17.1.1 Constants

The following constants are defined as properties of the application/oipfRemoteControlFunction embedded
object:

Constant name Numeric Value Use

REQUEST_CUI 0 A Remote Control Device (a Control Ul or an XML Ul
Listing) requests a control Ul by using the pre-defined
URI “/rcf/request_cui’.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 281 (415)

REQUEST_MSG 1 A Control Ul in the Remote Control Device sends a
message by using the pre-defined URI
“/rcf/request_msg”.

CREATE_APP 2 A Control Ul in the Remote Control Device sends a
message by using a URI defined by an OITF. This
message has triggered the application receiving this
event to be launched by the OITF.

7.17.1.2 Properties

readonly Integer currentRemoteDeviceHandle

The handle of the Remote Control Device which is associated with the DAE application in the mapping
information table (see section 8.5.6) and is waiting for the response from the DAE application. The value of
this handle is assigned by the OITF, and is unique within the OITF for the duration of a session (the duration
of the connection between the OITF and that Remote Control Device). Applications SHALL NOT rely on the
value of this handle being preserved across sessions.

This property is retrieved from the mapping information table (see section 8.5.6) in the OITF which contains
the pairing information between the Remote Control Device and the DAE application. Only one Remote
Control Device is allowed to connect to a given DAE application at a time.

If there is no mapping information between a Remote Control Device and the DAE application, this property
returns undefined.

readonly String currentRemoteDeviceUA

The Remote Control Device User-Agent string that has been provided in the Remote Control Device’s HTTP
request.

The application/oipfRemoteControlFunction object stores the value of the User-Agent header
included in the most recent HTTP request of the Remote Control Device currently being connected to this
DAE application.

Note: The User-Agent string of the Remote Control Device is expected to conform to the format of the User-
Agent string defined in [Reg. 5.3.a] of [CEA-2014-A].

If there is no mapping information between a Remote Control Device and the DAE application, this property
returns undefined.

function onReceiveRemoteMessage(Integer requestType, Integer remoteDeviceHandle,
Integer regHandle, String requestLine, String headers, String body)

The function that is called when the Remote Control Device sends an HTTP request with one of the pre-
defined URIs (“/rcf/request_cui” or “/rcf/request_msg”), or sends an HTTP request to the OITF to
launch a DAE application. The DAE application can distinguish between these two cases by the type
parameter as follows:

e When the Remote Control Device requests a control Ul by using the pre-defined URI

“/rcf/request_cui’, the function is called with the type parameter REQUEST _CUI.

e When the Remote Control Device sends a message by using the pre-defined URI
“/rcf/request_msg”, the function is called with the type parameter REQUEST_MSG.

When the DAE application is launched by the OITF in response to a request from the control Ul in the
Remote Control Device, the function is called with the type parameter CREATE_APP. The function will be
called after the DAE application has loaded (i.e. after the onLoad event has been dispatched to the DAE

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 282 (415)

application). The DAE application being launched is expected to contain an instance of the
application/oipfRemoteControlFunction object. The OITF SHALL dispatch the event to the
application/oipfRemoteControlFunction object in the DAE application matched with the Remote
Control Device handle which are paired in the mapping information table (see section 8.5.6). When the
ReceiveRemoteMessage event is dispatched to the target application, the DAE application receives the
Remote Control Device’s User-Agent header value containing the Remote Control Device’s capability (in the
headers parameter) which the OITF was given with the HTTP request from the Remote Control Device. The
DAE application SHALL include the User-Agent value from the Remote Control Device in the
XMLHttpRequest object it uses to retrieve the appropriate Control Ul from the IPTV Applications server (see
section 8.1.2).

When this event is invoked, the DAE application SHALL respond by calling the sendRemoteMessage()
method. This method need not be called from the event handling function, and may be called after a request
to the IPTV Applications Server for an appropriate Control Ul has completed.

Only one Remote Control Device is allowed to connect to a DAE application (see section 8.5.6) at any time.
If an HTTP request from another Remote Control Device directed at the DAE application is received by the
OITF while a Remote Control Device is connected, the OITF SHALL NOT make and dispatch
ReceiveRemoteMessage events to the target DAE application but SHALL send an HTTP response (HTTP
500 - Internal Server Error) to the Remote Control Device.

Every HTTP request from a Remote Control Device to the DAE application with which it is paired SHALL
generate an onReceiveRemoteMessage event, even if there are previous HTTP requests which the DAE
application has not yet responded to. Each HTTP request SHALL be given a unique reqHandle by the OITF
to allow the DAE application to distinguish between outstanding requests.

The specified function is called with six arguments: type, remoteDeviceHandle, regHandle,
requestLine, headers and body which are defined as follows:

e Integer requestType —the type of the HTTP request from the Remote Control Device. This
SHALL take one of the following values:

o REQUEST CUI
0 REQUEST_MSG
0 CREATE_APP

e Integer remoteDeviceHandle —the handle of the Remote Control Device which is sending the
HTTP request to the DAE application. This handle has a unique value which is assigned by the
OITF.

e Integer regHandle —the handle of the request from the Remote Control Device. The value of this
handle is assigned by the OITF, and is unique within the OITF for the duration of a session (the
duration of the connection between the OITF and that Remote Control Device). Applications SHALL
NOT rely on the value of this handle being preserved across sessions.

e String requestLine —the HTTP requestLine string that comes from the Remote Control Device.
e String headers - the HTTP request header string that comes from the Remote Control Device.
e String body — the HTTP request body that comes from the Remote Control Device.

The values of the requestLine, headers and body parameters are derived from the received HTTP
request as follows:

Where: HTTP Request = Request-Line CRLF Header-Lines CRLF Message
Header-Lines = *((general-header | request-header | entity-header) CRLF)
Message = [message-body]
Then: requestLine = “Request-Line”.

headers = "Header-Lines”.

body “Message “.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 283 (415)

function onResultMuticastNotif(Integer remoteDeviceHandle, Integer regHandle,
Boolean dynamic)

The function that is called when the Remote Control Device sends an HTTP request with an URL which is a
value of a <ruiEventURL> element in the Multicast Notification Message.

This function is called with the following arguments:

e Integer remoteDeviceHandle —the handle of the Remote Control Device which is sending the
HTTP request to the DAE application.

e Integer regHandle —the handle of the request from the Remote Control Device.

e Boolean dynamic - if true, the DAE application SHALL respond by calling the
sendRemoteMessage method. This method need not be called from the event handling function, and
may be called after a request to the IPTV Applications Server for an appropriate notification CE-
HTML document has completed.

7.17.1.3 Methods

Boolean useServerSideXMLUIListing(String xmlUIlListing,
Boolean advertiselmmediately)

Description Generate an XML Ul Listing by merging the XML Ul Listing currently being exposed by the
DLNA RUIS in the OITF with the XML UI Listing provided by the xmIUIListing parameter
of this method.

If the OITF successfully generates the new XML Ul Listing, this method SHALL return true.
Otherwise, it SHALL return false.

Arguments xmlUIListing The Server Side XML Ul Listing.

advertiselmmediately After generating the new XML Ul Listing, if this parameter is true,
the DLNA RUIS in the OITF SHALL send a UPnP Discovery
(SSDP:byebye) message followed by a UPnP Discovery
(SSDP:alive) message. This notifies the DLNA RUIC in any
Remote Control Device that it should retrieve the new XML Ul
Listing.

Boolean sendRemoteMessage(Integer remoteDeviceHandle, Integer regHandle,
String headers, String message)

Description Send the HTTP response with the headers and the message to the Remote Control Device
related to remoteDeviceHandle. This method is called by a DAE application in response to
a HTTP request from the Remote Control Device. This method can be called at any time for
any pending HTTP request (i.e. a request with handle reqHandle from the Remote Control
Device with handle remoteDeviceHandle that has not had a response from the OITF via a
sendRemoteMessage() or sendInternalServerError() call).

This method SHALL return true if the operation succeeded, or false if failed. If there is no
HTTP connection, it also returns false.

Arguments remoteDeviceHandle The handle of the Remote Control Device.

reqHandle The handle of the request as provided by
onReceilveRemoteMessage.

headers The HTTP response header string. This string is added to the
default HTTP header string generated by the OITF to form the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 284 (415)

HTTP header string used for the HTTP response. Any
parameters that are specified in both strings SHALL be set to the
value in the headers argument. If the headers supplied by the
application do not include a Content-Type header, the OITF
SHALL use the default content type of application/ce-
html+xml.

message

The HTTP response body string whose type is text (e.g. XML,
JSON, CE-HTML or Plain Text).

Boolean sendMulticastNotif(Integer remoteDeviceHandle,

Integer eventLevel,

String notifCEHTML, String friendlyName, String profileList)

Description

Devices could retrieve the
8.5.5).

Send the 3rd party multicast notification to any Remote Control Devices (as defined in
section 5.6.1 of [CEA-2014-A]) based on target Remote Device information.

The OITF SHALL store the text (essentially a CE-HTML document) provided in the
notifCEHTML parameter inside the DLNA RUIS and SHALL create a URL to it which can be
used by Remote Control Devices to retrieve the original text. This URL SHALL be inserted in
the <ruiEventURL> element in the Multicast Notification Message. If the noti fCEHTML
parameter is set to nul I, the HTTP request from the Remote Device to retrieve the text
SHALL be being pended and dispatch the onResultMuticastNotif event to the DAE
application which will retrieve a CE-HTML document dynamically. The DAE application
SHALL use the sendRemoteMessage method with a CE-HTML document related
parameters to send the text (notification message).

If the remoteDeviceHandle parameter in this method has a value other than -1, the
notification CE-HTML document will be retrieved by the only Remote Device matched with
the remoteDeviceHandle parameter, whereas if the parameter has -1, all of the Remote

notification CE-HTML document from the OITF (see section

This method SHALL return true if the operation succeeded, or false if it failed.

Arguments remoteDeviceHandle

The handle of the Remote Device.

eventLevel

The value of the HTTP LVL. This allows the Remote Control
Devices to filter the multicast notification messages. The following
are the defined event levels and the expected meaning of those
values (see section 5.6.1 of [CEA-2014-A] for more information):

Status Semantics

The “upnp:/emergency” is included in the
LVL header of the multicast notification.

The event carries critical information that the
Remote Control Device should act upon
immediately.

The “upnp:/fault”is included in the LVL
header of the multicast notification.

The event carries information related to an
error case.

The “upnp:/warning”is included in the LVL
header of the multicast notification.

The event carries information that is a non-

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 285 (415)

critical condition that the Remote Control
Device may want to process or pass to the
user.

3 The “upnp:/info” is included in the LVL
header of the multicast notification.

The event caries informational contents that is
not part of the main service interaction but
may be useful to some Remote Control
Devices in some circumstances, such as
debugging information or other data.

4 The “upnp:/general”is included in the LVL
header of the multicast notification.

For events that fit into no other defined

category.
notifCEHTML The text that makes up the notification CE-HTML document, the
link to which is sent to the Remote Control Device.
profileList All the profiles that the Remote Ul Server in the OITF requires the

Remote Ul Client in the Remote Control Device to support to
properly render the notification CE-HTML document. The value of
the <profilelist> element SHALL conform to the definition of
the <profilelist> element in the XML schema in Annex B of
[CEA-2014-A)].

Boolean sendinternalServerkError(Integer remoteDeviceHandle,

Integer regHandle)

Description Send the HTTP status code (500: Internal Server Error) in response to a pending HTTP
request from the Remote Control Device. This method SHALL return true if the operation
succeeded, or false if it failed.

Arguments remoteDeviceHandle The handle of the Remote Control Device.

reqHandle

The handle of the request as provided by
onReceilveRemoteMessage.

Boolean dropConnection(Integer remoteDeviceHandle)

Description Remove the mapping information in the table between the DAE application and the Remote
Control Device currently bound to the DAE application.
This method SHALL return true if the operation succeeded, or false if it failed.
Arguments remoteDeviceHandle The handle of the Remote Control Device.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 286 (415)

7.17.1.4 Events

For the intrinsic events listed in the table below, a corresponding DOM event SHALL be generated in the following

manner:

Intrinsic event

Corresponding DOM
event

DOM Event properties

onReceilveRemoteMessage

ReceiveRemoteMessage

Bubbles: No
Cancellable: No

Context Info: requestType,
remoteDeviceHandle, reqgHandle,
requestLine, headers, body

onResultMuticastNotif

ResultMuticastNotif

Bubbles: No
Cancellable: No

Context Info: remoteDeviceHandle,
reqHandle, dynamic

NOTE: the above DOM events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving ReceiveRemoteMessage or a ResultMuticastNotif event during the
bubbling or the capturing phase. Applications that use DOM event handlers SHALL call the addEventListener()
method on the application/oipfRemoteControlFunction object. The third parameter of addEventListener, i.e.

“useCapture”, will be ignored.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 287 (415)

8 System integration aspects
8.1 HTTP Protocol

In addition to what is required by section 5.3 of [CEA-2014-A] an OITF SHALL apply the following requirements.

8.1.1 HTTP User-Agent header

All DAE application HTTP requests SHALL include a User-Agent header using the syntax described in this section.
Embedded objects HTTP requests MAY include a User-Agent header using this syntax.

The User-Agent header SHALL include:

OIPF-<oipfProfile>/<releaseVersion>._<majorVersion>_<minorVersion> (<capabilities>;
[<vendorName>]; [<modelName>]; [<softwareVersion>]; [<hardwareVersion>];
[<familyName>]; <reserved>) [<appName>[/<appVersion>]]

Where:
= the <capabi lities> field consists of a description of the OITFs capabilities. Valid values include:

0 abase profile string concatenated with one or more optional Profile name fragment strings, such as the
base Ul profile strings and Ul profile name fragment strings as defined in section 9.2 “Default Ul
profiles”.

0 the <oipfProfile> field identifies the profile implemented by the OITF as defined in the
specification of the oi pfProfi le property of the Local System class (in section 7.3.3 “The
LocalSystem class™).

o the <releaseVersion>, <majorVersion> and <minorVersion> fields identify the version
of the specification implemented by the OITF as defined in section 7.3.3 “The LocalSystem class” with
properties of the same name.

= the <vendorName>, <mode IName><fami lyName>, <softwareVersion> and <hardwareVersion>
fields are the same as the one defined in section 7.11.1 “The application/oipfRemoteManagement embedded
object” and are optional.

» the <reserved> field is reserved for future extensions
= the <appName> and <appVersion> fields are defined in the window.navigator object and are optional.
This User-Agent header MAY be extended with other implementation-specific information.

Valid examples of such syntax are:

User-Agent: OIPF-01P/2.3.0 (OITF_HD_UIPROF+PVR+DL; Sonic; TV44; 1.32.455; 2.002;
com.acme.2012;) Bee/3.5
User-Agent: OIPF-BMP/2.3.0 (OITF_HD UIPROF+PVR+DL;;;::3:)

8.1.2 HTTP X-OITF-RCF-User-Agent header

When the DAE application or embedded object (“application/oipfRemoteControlFunction”) makesa HTTP
request for the Control Ul to the IPTV Applications server, the value of the X-O1 TF-RCF-User-Agent header SHALL
be filled with the value of the User-Agent header provided by the DAE application (and which came from the DLNA
RUIC on the Remote Control Device).

8.2 Mapping from APIs to Protocols

This section describes mapping of DAE APIs to the specific protocol entities as defined in the protocol specification
[OIPF_PROTZ2].

Section 8.2.1 describes mappings that apply to CoD download over HTTP.

Section 8.2.2 describes mappings that apply to CoD unicast streaming with SIP session management.

Section 8.2.3 describes mappings that apply to Multicast Streaming of Scheduled Content with SIP session management.
Section 8.2.4 describes mappings that apply to Communication Services with SIP session management.

Section 8.2.5 describes mappings that apply to CoD unicast streaming over RTP and HTTP.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 288 (415)

Section 8.2.6 describes mappings that apply to Scheduled Content Multicast Streaming.

This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification for
APIs between the OITF and the Network over reference points UNIT-17.

8.2.1 CoD Download Over HTTP

This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification for
APIs between the OITF and the Network over reference points UNIT-17 for download over HTTP.

Methods Procedures
registerDownload(String API described in section 7.4.1.1 to download content
contentAccessDownloadDescriptor, described in the contentAccessDownloadDescriptor.
Date downloadStart, Integer Data struct fth
priority) ata structure of the ' . '

contentAccessDownloadDescriptor as described in
Annex E.1 “Content Access Download Descriptor
Format”
If the OITF includes the Content Download functional
entity ,the information in the contentAccessDescriptor
is passed to the Content Download functional entity to
download content over UNIT-17 using HTTP as
described in section 5.3.4.1 of [OIPF_PROTZ2] and
section 4.6.4 “Download protocol(s)”.
gig:ﬁ;eggﬁ"“:’g;g%jges%ggg URL, API described in section 7.4.1.1 to download the
downloadStart, Integer priority) content identified by the given URL.

If the OITF includes the Content Download functional
entity, the URL is passed to the Content Download
functional entity to download content over UNIT-17
using HTTP as described in section 5.3.4.1 of
[OIPF_PROT2].

As specified in section 7.4.1.1, the contentType
attribute can be used to evaluate if the content type is
part of the list of accepted content types of the OITF.

If contentType has value
“application/vnd.oipf.ContentAccessDownload
+xml”, the method SHALL return a download identifier,
after which the OITF SHALL immediately fetch the
Content Access Download Descriptor, after which the
same SHALL happen as if registerDownload() had
been called.

registerDownloadFromCRID(String : . .
CRID, String IMI, Date API described in section 7.4.2 to download content

downloadStart, Integer priority) described in a BCG record.

If the OITF includes the Content Download functional
entity, <CRID,IMI> BCG tuple is resolved to an URL as
described in section 4.3 of [OIPF_METAZ2] and passed
to the Content Download functional entity to download
content over UNIT-17 using HTTP as described in
section 5.3.4.1 of [OIPF_PROT2].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 289 (415)

8.2.2 CoD Unicast Streaming with SIP Session Management

This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification
[OIPF_PROT2] for APIs between the OITF and the Network over reference points HNI-IGI, UNIS-11 and UNIT-17U

for CoD Unicast Streaming with SIP session management.

Method

Procedures

play(Number speed)

Selection of a content item results in session initiation and access to
content stream.

Parameters needed to build the offer SDP may be pre defined
locally in the OITF or the OITF SHALL request the IG to retrieve
missing SDP parameters as described in [OIPF_PROT?2] section
5.3.2.2.

If the OITF does not have all transport parameters (RTP or UDP
transport for MPEG2TS encapsulation or direct RTP, FEC layers
addresses and ports), code information or bandwidth information to
populate the SDP the OITF SHALL prompt the IG to send
OPTIONS request in order to retrieve the missing parameters.

The OITF SHALL provide the following information for the
OPTIONS request. Not all required headers are listed. Refer to the
Protocol specification [OIPF_PROTZ2] for a complete list.

X- Identify the HNI-IGI method with the content

OITF- ; s ;
Reques identifier as described by the data property.eg.

t-Line OPTION sip:PSI-
Twister@IPTV_Service_Control .orange.com

SIP/2.0
éiTF Local defined OITF CurrentUser property. e.g.
From <sip:family@ims.live._ericsson.com>;
tag=1211455936632545012
éiTF Copied from the data property. e.g.
To sip: PSI-

Twister@IPTV_Service_Control .orange.com

The response to the OPTIONS message request contains the
information to populate the SDP offer.

The OITF prepares an SDP offer and requests the IG to initiate a
session, in addition to the SDP the following parameters are
forwarded from the OITF to the IG. Not all required headers are
listed. Refer to the Protocol specification [OIPF_PROT?2] for a
complete list.

X- Identify the HNI-IGI method with the content
gégﬁ;s identifier as described by the data property.eg.

t-Line INVITE sip:PSI-
Twister@IPTV_Service_Control .orange.com

SIP/2.0
éiTF Local defined OITF CurrentUser property. e.g.
From <sip:family@ims.live._ericsson.com>;

tag=1211455936632545012

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 290 (415)

Method Procedures
X- Copied from the data property. e.g.
O1TE- _D property. e.g
To sip: PSI-
Twister@IPTV_Service_Control .orange.com

After a successful session setup the OITF SHALL use the media
player to access the RTSP URI with the session ID negotiated and
received as part of the SDP offer, described in [OIPF_PROT2]
section 7.1.1.2.

The OITF SHALL send an RTSP PLAY over UNIS-11 using
attribute values received in the SDP from the session initiation
procedure. The RTSP PLAY is as described in the [OIPF_PROT2]
section 7.1.1.2.

The RTSP fields in the RTSP PLAY message SHALL be filled as
follows:

e The RTSP URL SHALL be set from the SDP h-uri attribute
in the case of an absolute URI. The “data” property SHALL
be updated with the SDP h-uri attribute. If the value of h-uri
is a relative URI that is in the form of a media path, then the
RTSP absolute URL is constructed by the OITF using the
SDP IPAddress (from c-line) and port (from m-line) as the

base followed by h-uri value for the media path.
(e.g. rtsp://10.5.1.72:22554/TV3/823527)

e The RTSP Scale header SHALL be set to the value
specified in argument speed in method play. The argument
SHOULD equal one of the values in the playSpeeds
property. The Scale values [RFC2326] section 12.34 are as
follows:

o0 1indicates normal play.

o If not 1, the value corresponds to the rate with
respect to normal viewing rate.

0 A negative value indicates reverse direction.

If the speed argument of method play does not equal a supported
play speed indicated by the playSpeeds property, the player SHALL
play the content at the closest available playback speed. The play()
method SHOULD only return false if the best effort to play back the
file at any speed has failed.

The actual playback speed SHALL be available through the speed
property of the A/V Control object.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

stop() The method enables the OITF to terminate and ongoing CoD
session. The OITF SHALL request the IG to terminate the session
as described in [OIPF_PROT?2] section 5.3.2.2.

The OITF SHALL include the following information from the request.
Not all required headers are listed. Refer to the Protocol
specification [OIPF_PROT?2] for a complete list.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 291 (415)

Method Procedures

X- Identify the HNI-IGI method with the content

OITF- . o -
Reques identifier as described by the data property.eg.

t-Line BYE sip:PSI-
Twister@IPTV_Service_Control .orange.com

SIP/2.0
éiTF Local defined OITF CurrentUser property. e.g.
From <sip:family@ims. live_ericsson.com>;
tag=1211455936632545012
X- Copied from the data property. e.g.
X op property. e.g
To sip: PSI-

Twister@IPTV_Service_Control .orange.com

The OITF SHALL remove all context information relevant to the
terminated COD session upon a successful response from the 1G.

seek(Integer pos) If the seek() method is called while the player is in the “playing”
state, it sets current play position to “pos”, by using the “Range”
parameter in the RTSP PLAY as described in [OIPF_PROT2]
section 7.1.1.2.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged
event indicating a new playback position of “pos”.

If the seek() method is called while the player is in the “paused”
state, the value of playPosition is changed to reflect the new play
position. This is the new play position that SHALL be used for the
“Range” parameter of the RTSP PLAY message when playback is
resumed.

play(0) This method causes the OITF to send an RTSP PAUSE message
(refer to [OIPF_PROT?2] section 7.1.1.2). The RTSP PAUSE
message SHALL include:

e The RTSP URL SHALL be set to the value retrieved from
the fmtp:iptv_rtsp h-uri attribute of the SDP answer.

e Session header SHALL be set as specified in the SDP
answer fmtp:iptv_rtsp h-session attribute

After a successful response to the RTSP PAUSE message has
been received, the OITF SHALL generate a PlaySpeedChanged
event indicating a playback speed of 0.

next() Not Supported.

NOTE: Track information is not supported in the protocol
specification and therefore out of scope.

previous() Not Supported.

NOTE: Track information is not supported in the protocol
specification and therefore out of scope.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 292 (415)

Property Procedures

read/write String data This property holds the URL that identifies the content, as defined in
section 4.7.1. See [OIPF_PROT2] section 6.1.2.2.1.1 for details on
CoD URI.

It is used by the OITF compose the following headers for requests
towards the I1G

X-OITF-Request-Line
X-OITF-To

If the “data” property of the A/V Control object refers to a Content-
Access Streaming Descriptor (i.e. the object has type
“application/vnd.oipf.ContentAccessStreaming+xml” as
defined in section 7.14.1.5), the OITF must perform the following
steps prior to performing the procedures defined in [OIPF_PROT2]
as described for method play():

e AnHTTP GET request SHALL be made with the Request-
URI set to the URL of the Content-Access Descriptor as
denoted by the “data” property of the A/V Control object.

e After the server has returned a Content Access Streaming
Descriptor (i.e. a document with type
“application/vnd.oipf.ContentAccessStreaming+xm
1”), the OITF SHALL interpret the contents of the Content-
Access Descriptor and choose a URL defined by one of the
<ContentURL> elements. The criteria for choosing a URL
can be the DRM system supported by the OITF. The URL
SHALL then be used for setting up a Streaming CoD session,
after which playback can be started (when the play()
method is invoked). The “data” property of the AV object
SHALL be changed to represent the chosen URL.

e Based on the information retrieved from the Content-Access
Streaming Descriptor, the OITF SHALL passing the
<DRMControl Information> to the appropriate DRM agent,
and SHOULD initialize the AV playback, i.e. by loading the
correct codecs as identified by the Content-access Streaming
Descriptor.

readonly Number The property holds the current play position in milliseconds of the
playPosition media referenced by the data property. The property value SHALL be
based on the value retrieved using the RTSP GET_PARAMETERS
method and parameter “position” (refer to [OIPF_PROT2] section
7.1.1.2) adjusted for played duration and used scale.

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number The property holds the available speeds, or referred in RTSP as
playSpeeds[] Scale, to be used to change the playback speed. The property value
SHALL be based on the value retrieved using RTSP
GET_PARAMETERS method and parameter “scales” (refer to
[OIPF_PROT?2] section 7.1.1.2).

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 293 (415)

Property Procedures

GET_PARAMETER has not returned a value.

readonly Number The property holds the total duration in milliseconds of the media
playTime referenced by the data property. The property value SHALL be based
on the value retrieved using RTSP GET_PARAMETER method and
parameter “duration” (refer to [OIPF_PROT?2] section 7.1.1.2).

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number No procedures defined since it is not related to protocol specification.
playState

readonly Number error No procedures defined since it is not related to protocol specification.
readonly Number speed Float value indicating the actual playback speed for the content

referenced by the data property. The normal default playback speed
is represented by value 1.

Intrinsic event Procedure

onPlaySpeedChanged When RTSP ANNOUNCE with either beginning-of-stream or end-of-
stream codes arrives the OITF SHALL generate
onPlaySpeedChanged event with a speed value of 0.

onPlayPositionChanged When the response to the RTSP PLAY with Range header request
(Range is included when performing seek() with a position) the
OITF SHALL generate onPlayPositionChanged event with the
accepted position.

8.2.3 Scheduled Content Multicast Streaming with SIP Session
Management

This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification
[OIPF_PROT2] for APIs between the OITF and the Network over reference points HNI-IGI, UNIS-11, UNIS-13 and
UNIT 17 for Scheduled Content multicast streaming with SIP session management.

8.2.3.1 Conveyance of channel list

Service discovery description procedure as described in [OIPF_PROT2] section 6.1.3.1 enables the OITF to obtain the
URL to access the broadcast channel information. The OITF SHALL utilise UNIS-7 using this URL to obtain the
Broadcast Discovery Record.

8.2.3.2 Switching channels

Methods Procedures

setChannel (Channel channel, The setChannel () method of the video/broadcast object
Egg{ggg Aggégggégg}ig:g:ﬂgu SHALL be used to initiate a broadcast session or switch

channels. The procedures that are performed over the HNI-IGI
reference point depend on the current state of broadcast session,
either it is active or not. Note that an inactive broadcast session
means no service is being viewed.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 294 (415)

If the channel is an IMS based IPTV service (i.e., if it is of type
ID_IPTV_SDS and if the corresponding service has a “sip-igmp-
rtp-udp” or “sip-igmp-udp” file format specified in its SD&S BDR
record), the following steps are taken:

Session Initiation

The OITF SHALL generate a session initiation request over the
HNI-IGI including and SDP offer as described in [OIPF_PROT?2]
section 5.3.1. The bandwidth is set according to the explanation
under heading “Selection of Bandwidth” further down.

If a “contentAccessDescriptorURL” has been specified for the
setChannel () method, the OITF must perform the following
steps prior to performing the procedures defined in
[OIPF_PROT2] for performing setChannel () as described
below:

e AnHTTP GET request SHALL be made with the
Request-URI set to the URL of the Content-Access
Descriptor as denoted by the “contentAccessDescriptor”
attribute.

e Based on the information retrieved from the Content-
Access Descriptor, the OITF SHALL passing the
<DRMControl Information> to the appropriate DRM
agent.

The OITF SHALL provide the following information as part of the
scheduled session initiation request as described in
[OIPF_PROT2] section 6.2.2.1. Not all required headers are
listed. Refer to the Protocol specification [OIPF_PROT2] for a

complete list.

X-OITF- Identify the HNI-IGI method with the well known

E(iaggest— PSI (Public Service Identifier) of the scheduled
content. e.g.
INVITE
sip:IPTV_SC_Service@iptv.ericsson.com
SIP/2.0

X-OITF- Local defined OITF CurrentUser property.

From e

.g.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

_>|§-0|TF- PSI of the scheduled content. e.g.

o]

sip:IPTV_SC_Service@iptv.ericsson.com

The Offer SDP included in the OITF be SHALL have attributes as
described in [OIPF_PROT2] Annex D.2.

On positive response to the INVITE request the OITF SHALL
send an IGMP Join request on the UNIS-13 as described in
[OIPF_PROTZ2] section 8.1.1.1.

Session Modification

If the bandwidth conditions change as described under heading
“Selection of Bandwidth” further down then the OITF SHALL
generates a session modification request over the HNI-IGI
including the new SDP offer.

The OITF SHALL provide the following information as part of the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 295 (415)

scheduled session modification request as described in
[OIPF_PROTZ2] section 6.2.2.1. Not all required headers are
listed. Refer to the Protocol specification [OIPF_PROT2] for a

complete list.

X-OITF- Identify the HNI-IGI method with the well known

E?ﬂgeSt' PSI (Public Service Identifier) of the scheduled
content. e.g.
INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0

X-OITF- Local defined OITF CurrentUser property.

From e

.g.

<sip:family@ims.live_ericsson.com>;
tag=1211455936632545012

?-O”’F- PSI of the scheduled content. e.g.

o]

sip:IptvBroadcast@iptv.ericsson.com

The Offer SDP included by the OITF SHALL have attributes as
relevant to the new channel as described in [OIPF_PROT2]
Annex D.2.

On receiving a successful response to the INVITE request the
OITF SHALL send and IGMP Leave and IGMP Join request on
the UNIS-13 as described in [OIPF_PROT2] section 8.1.1.1.

No Session Modification

If the bandwidth conditions as described under heading “Selection
of Bandwidth” further down have not changed then the OITF
SHALL send a membership report to leave the previously viewed
channel, if applicable, and with the same membership report join
to the multicast group associated with the selected channel. The
multicast group information is retrieved from the Broadcast
Discovery Record.

Selection of Bandwidth

The bandwidth to be used for the broadcast session depends on
the information provided in the Broadcast Discovery Record (refer
to section 3.2.2.1 of [OIPF_METAZ2] The Broadcast Discovery
Record uses the term “service” to indicate a channel.

If the TimeToRenegotiate (TTR) element is not provided within
the IPService of the Broadcast Discovery Record then the
bandwidth SHALL be based on the maximum bandwidth for all
the services in the Broadcast Discovery Record. In this case only
one session initiation is performed at initial activation of broadcast
service, and no session modification is required.

If the TTR element is provided then the MaxBitrate from the new
service and current service are compared. If broadcast service is
not active and there is no active current service, session initiation
is performed with the new service MaxBitrate. For already active
broadcast service there are three conditions.

o If the MaxBitrate of the new service is greater than that of
the current service and the reserved bandwidth is
exceeded, network bandwidth reservation using the
MaxBitrate of the new service SHALL occur immediately
with session modification to ensure sufficient bandwidth is

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 296 (415)

made available for the new service.

o |f the MaxBitrate of the new service is equal to that of the
current service, network bandwidth reservation
procedures SHALL NOT be performed as sufficient
bandwidth is already available for the new service.

o If the MaxBitrate of the new service is less than that of
the current service and there is no pending TTR timer, a
timer using the TTR element of the new service is started
which will renegotiate the bandwidth with session
modification.

Note that at every channel change if there is a pending timeout
for session modification due to a previous service change then
the timer is restarted. When the timer expires the bandwidth for
the currently viewed service is used in a session modification.

The session initiation, session modification and no session
modification are further described above.

8.2.3.3

End broadcast service

Methods

Procedures

release()

The release method of the video/broadcast object causes the OITF
to perform an IGMP Leave on the active broadcast session as
described in [OIPF_PROT2] section 8.1.1.1.

If the channel has an idType of ID_IPTV_SDS, the OITF SHALL
then execute a session termination procedure by sending a BYE
request over the HNI-IGI interface as described in section
[OIPF_PROTZ2] section 5.3.1.1. The request SHALL include the
following information. Not all required headers are listed. Refer to
the Protocol specification [OIPF_PROT2] for a complete list.

X-OITF- Identify the HNI-IGI method with the well known
Request- PSI (Public Service Identifier) of the scheduled
Line

content. E.g.

INVITE
sip:IPTV_SC_Service@iptv.ericsson.com
SIP/2.0

é-OWF- Local defined OITF CurrentUser property. e.g.
rom
<sip:family@ims.live_ericsson.com>;
tag=1211455936632545012

#-OlTF- PSI of the scheduled content. e.g.:
o}
sip:IPTV_SC_ Service@iptv.ericsson.com

8.2.3.4

Network timeshift of broadcast service

Methods

Procedures

pause()

The method has different behaviour if the pause () method has
previously been invoked. While the first pause () request sets up
the session over HNI-IGI the subsequent pause() requests simply

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 297 (415)

issue an RTSP PAUSE request.
First pause() request

The OITF SHALL generates a session modification request over
the HNI-IGI including the modified SDP offer. The SDP offer
included by the OITF SHALL have attributes as relevant to the
unicast stream to be setup.

The OITF SHALL provide the following information as part of the
scheduled session modification request as described in
[OIPF_PROT?2] section 6.2.2.1. Not all required headers are listed.
Refer to the Protocol specification [OIPF_PROT?2] for a complete
list.

X-OITF- Identify the HNI-IGI method with the well-
Request- known PSI (Public Service Identifier) of the
Line
scheduled content, e.g.
INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0
X-OITF- Local defined OITF CurrentUser property,
From e.g.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-To PSI of the scheduled content, e.g.
sip:IptvBroadcast@iptv.ericsson.com

On receiving a successful response to the INVITE request and if
the channel has an idType of ID_IPTV_URI, the OITF SHALL
send and IGMP Leave and request on the UNIS-13 as described in
[OIPF_PROTZ2] section 8.1.1.1.

Subsequent pause() requests

This request causes the OITF to send an RTSP PAUSE message
(refer to [OIPF_PROTZ2] section 7.1.1.2). The RTSP PAUSE
message SHALL include:

e The RTSP URL SHALL be set to the value retrieved from
the fmtp:iptv_rtsp h-uri attribute of the SDP answer.

e Session header SHALL be set as specified in the SDP
answer fmtp:iptv_rtsp h-session attribute

After a successful response to the RTSP PAUSE message has
been received, the OITF SHALL generate a PlaySpeedChanged
event indicating a playback speed of 0.

resume()

The OITF SHALL send an RTSP PLAY over UNIS-11 using
attribute values received in the SDP from the session modification
procedure. The RTSP PLAY is as described in [OIPF_PROT2]
section 7.1.1.2.

The RTSP fields in the RTSP PLAY message SHALL be filled as
follows:

e The RTSP URL SHALL be set from the SDP h-uri attribute
in the case of an absolute URI. The data property SHALL
be updated with the SDP h-uri attribute. If the value of h-uri
is a relative URI that is in the form of a media path, then
the RTSP absolute URL is constructed by the OITF using
the SDP IPAddress (from c-line) and port (from m-line) as

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 298 (415)

the base followed by h-uri value for the media path. (e.g.
rtsp://10.5.1.72:22554/TV3/823527)

e The RTSP URL SHALL be set from the SDP h-uri attribute
in the case of an absolute URI. The data property SHALL
be updated with the SDP h-uri attribute. If the value of h-uri
is a relative URI that is in the form of a media path, then
the RTSP absolute URL is constructed by the OITF using
the SDP IPAddress (from c-line) and port (from m-line) as
the base followed by h-uri value for the media path.(e.qg.
rtsp://10.5.1.72:22554/TV3/823527)

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

setSpeed(Number speed)

Sets current speed by using the “Scale” header in the RTSP PLAY
as described in [OIPF_PROT2] section 7.1.1.2.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating a new playback speed.

seek(Integer offset,
Integer reference)

Sets current play position based on the specified offset from the
given reference point, by using the “Range” parameter in the RTSP
PLAY as described in [OIPF_PROT2] section 7.1.1.2.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged
event indicating the new playback position.

stopTimeShift()

The OITF SHALL generates a session modification request over
the HNI-IGI including the modified SDP offer. The SDP offer
included by the OITF SHALL have attributes as relevant to the
channel as described in [OIPF_PROT2] Annex D.2.

The OITF SHALL provide the following information as part of the
scheduled session modification request as described in
[OIPF_PROTZ2] section 6.2.2.1. Not all required headers are listed.
Refer to the Protocol specification [OIPF_PROT?2] for a complete
list.

éégﬂg{_ Identify the HNI-IGI method with the well-

Line known PSI (Public Service Identifier) of the
scheduled content, e.g.

INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0

X-OITF-From Local defined OITF CurrentUser property,

e.g.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-To PSI of the scheduled content, e.qg.

sip: IptvBroadcast@iptv.ericsson.com

On receiving a successful response to the INVITE request and if
the channel has an idType of ID_IPTV_URI, the OITF SHALL
send and IGMP Join and request on the UNIS-13 as described in
[OIPF_PROTZ2] section 8.1.1.1.

setChannel (Channel channel,

The following procedure is only applicable if Network Timeshift of

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 299 (415)

Boolean trickplay, String broadcast service is in progress.
contentAccessDescriptorURL)
The OITF SHALL generates a session modification request over

the HNI-IGI including the modified SDP offer. The SDP offer
included by the OITF SHALL have attributes as relevant to the new
channel as described in [OIPF_PROT2] Annex D.2.

The OITF SHALL provide the following information as part of the
scheduled session modification request as described in
[OIPF_PROTZ2] section 6.2.2.1. Not all required headers are listed.
Refer to the Protocol specification [OIPF_PROT?2] for a complete

list.

éégﬂgi- Identify the HNI-IGI method with the well-

Line known PSI (Public Service Identifier) of the
scheduled content, e.g.
INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0

X-OITF-From Local defined OITF CurrentUser property,
e.g.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-0ITF-To PSI of the scheduled content, e.g.
sip:IptvBroadcast@iptv.ericsson.com

On receiving a successful response to the INVITE request and if
the channel has an idType of ID_IPTV_URI, the OITF SHALL
send and IGMP Join and request on the UNIS-13 as described in
[OIPF_PROTZ2] section 8.1.1.1.

String data This property holds the RTSP URI from the SDP h-uri attribute.
Prior to a successful SIP INVITE the value is undefined.

Note that all the remaining properties listed under section 8.2.2, CoD Unicast Streaming with SIP Session Management,
SHALL be supported as described.

8.2.4 Communication Services with SIP Session Management

This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification
[OIPF_PROT2] for APIs between the OITF and the Network over reference point HNI-IGI for Communication Services
with SIP session management.

Methods Procedures
registerUser(String userlid, Performs registration with the specified user ID as described in
String pin) [OIPF_PROT2] section 5.4.6.1.
deRegisterUser(String userld) Performs de-registration with the specified user ID as described

in [OIPF_PROT?2] section 5.4.6.1.

subscribeNotification OITF maintains applications that have subscribed to

(FeatureTagCollection notifications. If applicable it will send a re-registration to the 1G.

featureTagCollection, Boolean Wh . t the IG it shall notify the OITE

performUserRegistration) en new messages arrive at the IG it shall notify the (as
defined in [OIPF_PROT?2] section 5.5.1.2).

unsubscribeNotification() This is a local call within OITF to notify that the DAE application
SHALL NOT receive unsolicited notification. The OITF shall use

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 300 (415)

native code to handle new dialogues. Any feature tag values that
were added by the DAE application are removed for the
indicated userld since no native code is setup to process the
new dialogues for the feature tag values.

8.2.5 CoD Unicast Streaming over RTP and HTTP
8.25.1 General

This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification
[OIPF_PROT2] for APIs between the OITF and the Network over reference points UNIS-11 and UNIT-17 for CoD
unicast streaming over RTP and HTTP.

Method Procedures

play(Number speed) The “speed” parameter is a floating point value indicating the
requested playback speed. A value of 1 represents normal playback
speed, and other values are relative to this.

A “speed” value of zero SHALL NOT initiate any procedures.
RTSP-RTP

The RTSP URL signalled by the “data” attribute SHALL be used to
initiate the process defined in [OIPF_PROT2] section 7.1.1.1.1. The
“data” attribute SHALL furthermore be updated with the new URI after
redirection requests (moved). The RTSP PLAY request SHALL
include a “Scale” header set to the value of the “speed” parameter
passed to the API. The server will play the stream at the specified
speed, if supported.

If property oi tFNoRTSPSessionControl is set to true then the
RTSP messages DESCRIBE and SETUP are not used. If the play()
method is called with a non-zero speed the property
oitfRTSPSessionld is copied to the RTSP Sessionld header for
the RTSP PLAY request. If the oi tFRTSPSessionld is undefined
the play() method SHALL fail.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

HTTP

The HTTP URL signalling by the “data” attribute SHALL be used to
initiate the process defined in [OIPF_PROT?2] section 5.3.2.2. The
“data” attribute SHALL furthermore be updated with the new URI after
redirection requests (moved). The “speed” parameter SHALL be
passed to the OITF media player, which SHOULD attempt to play
back the content at the requested speed.

If the media player successfully begins to play back the content, the
OITF SHALL generate a PlaySpeedChanged event indicating the
actual playback speed.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 301 (415)

Method Procedures

stop() RTSP-RTP

The OITF SHALL initiate the process defined in [OIPF_PROTZ2]
section 7.1.1.1.2 except if the property
oitfNoRTSPSessionControl is set to true.

HTTP

The OITF SHALL stop playback. The OITF MAY close the connection
to the server and MAY clear any buffered content.

seek(Integer pos) RTSP-RTP

If the seek() method is called while the player is in the “playing
state”, it sets current play position to “pos”, by using the “Range”
parameter in the RTSP PLAY as described in [OIPF_PROT2] section
7.1.1.1.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged event
indicating a new playback position of “pos”.

If the seek() method is called while the player is in the “paused”
state, the value of playPosition is changed to reflect the new play
position. This is the new play position that SHALL be used for the
“Range” parameter of the RTSP PLAY message when playback is
resumed.

HTTP

If the seek() method is called while the player is in the “playing
state”, the OITF SHALL attempt to playback from the specified
position “pos”. It MAY use the RANGE header as described in
[OIPF_PROTZ2] section 5.3.2.2 as necessary.

If the media player successfully begins to play back the content from
the specified position, the OITF SHALL generate a
PlayPositionChanged event indicating a new playback position of
“pos”.

If the seek() method is called while the player is in the “paused”
state, the value of playPosition is changed to reflect the new play
position. This is the new play position from which playback SHALL be
resumed.”.

play(0) RTSP-RTP

This method causes the OITF to send an RTSP PAUSE message
(refer to [OIPF_PROTZ2] section 7.1.1.2). The RTSP PAUSE message
SHALL include:

After a successful response to the RTSP PAUSE message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating a play speed of 0.

HTTP

The OITF SHALL pause playback.

If the media player successfully pauses playback, the OITF SHALL
generate a play speed event indicating a PlaySpeedChanged of 0.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 302 (415)

Method Procedures
next() Not Supported. Note: Track information is not supported in the
protocol specification and therefore out of scope.
previous() Not Supported. Note: Track information is not supported in the
protocol specification and therefore out of scope.
Property Procedures
read/write String data RTSP-RTP

This property holds the RTSP URI for the content item.
HTTP

The property holds the HTTP URI for the content item.

If the “data” property of the A/V Control object refers to a
Content-Access Streaming Descriptor (i.e. the object has type
“application/vnd.oipf.ContentAccessStreaming+xml”
as defined in section 7.14.1.5), the OITF must perform the
following steps prior to performing the procedures defined in
[OIPF_PROTZ2] as described for method play():

e AnHTTP GET request SHALL be made with the
Request-URI set to the URL of the Content-Access
Streaming Descriptor as denoted by the “data” property
of the A/V Control object.

e After the server has returned a Content Access
Streaming Descriptor (i.e. a document with type
“application/vnd.oipf.ContentAccessStreaming
+xml”), the OITF SHALL interpret the contents of the
Content-Access Streaming Descriptor and choose a
URL defined by one of the <ContentURL> elements.
The criteria for choosing a URL can be the DRM system
supported by the OITF. The URL SHALL then be used
for setting up a Streaming CoD session, after which
playback can be started (when the play() method is
invoked). The “data” property of the AV object SHALL
be changed to represent the chosen URL.

e Based on the information retrieved from the Content-
Access Streaming Descriptor, the OITF SHALL passing
the <DRMControlinformation> to the appropriate DRM
agent, and SHOULD initialize the AV playback, i.e. by
loading the correct codecs as identified by the Content-
access Streaming Descriptor.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 303 (415)

readonly Number The property holds the current play position in milliseconds of
playPosition the media referenced by the data property.

For RTSP-RTP, The property value SHALL be based on the
value retrieved using the RTSP GET PARAMETERS method
and parameter “position” (refer to [OIPF_PROTZ2] section
7.1.1.2) adjusted for played duration and used scale.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number For RTSP-RTP, the property holds the available speeds, or
playSpeeds[] referred in RTSP as Scale, to be used to change the playback
speed. The property value SHALL be based on the value
retrieved using RTSP GET PARAMETERS method and
parameter “scales” (refer to [OIPF_PROTZ2] section 7.1.1.2).

For HTTP, the possible playback speeds are determined by the

OITF internal capabilities and buffering model, and the speed at
which content is delivered. The OITF MAY make this information
available via this property.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number playTime The property holds the total duration in milliseconds of the media
referenced by the data property.

For RTSP-RTP, the property value SHALL be based on the
value retrieved using RTSP GET_PARAMETER method and
parameter “duration” (refer to [OIPF_PROTZ2] section 7.1.1.2).

For HTTP, if the data property references a content-access
streaming descriptor that includes the optional “Duration”
attribute then the property value SHALL be derived from the
value encoded in that attribute.

Otherwise, if the data property references an MPEG DASH MPD
and the @mediaPresentationDuration attribute is present
then the property value SHALL be derived from the value
encoded in that attribute.

Otherwise, if the data property references a file in the MP4 file
format (as defined in section 4.2 of [OIPF_MEDIAZ2]) then

e If that file is fragmented, the property value SHALL be
derived from the value indicated in the
fragment_duration of the ‘mehd’ box if that box is
present

o If that file is not fragmented, the property value SHALL
be derived from the value indicated in the duration of the
‘mvhd’ box. Otherwise the property value MAY be
determined using the “Content-Length” HTTP header,
although it is noted that this method does not work for
variable bit rate content.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 304 (415)

readonly Number playState No procedures defined since it is not related to protocol
specification.

readonly Number error No procedures defined since it is not related to protocol
specification.

readonly Number speed Float value indicating the actual playback speed of the player for

the content referenced by the data property. The normal default
playback speed is represented by value 1.

Intrinsic event Procedure

onPlaySpeedChanged For RTSP-RTP, when RTSP ANNOUNCE with either beginning-
of-stream or end-of-stream codes arrives the OITF SHALL
generate onPlaySpeedChanged event with a speed value of 0.

onPlayPositionChanged For RTSP-RTP, when the response to the RTSP PLAY with
Range header request (Range is included when performing
seek () with a position) the OITF SHALL generate
onPlayPositionChanged event with the accepted position.

8.2.5.2 CoD Media Queuing

This section extends the mapping defined above to address behaviour when media queuing is in effect.

Methods Procedures

queue(String uri) Queued media items available via HTTP or stored on the
terminal MAY be pre-buffered by the OITF in order to
reduce transition delays. When pre-buffering media
items, the specified buffering policy SHALL NOT be
affected.

For queued media items available via RTSP, session
setup MAY be carried out prior to the end of the currently
playing media item.

play(Number speed) When the start of a media item is reached due to a
negative play speed, the playback SHOULD resume at
normal play speed without playing any previous media
items.

When the end of a media item is reached, playback of
any queued media items SHALL be initiated
automatically at the specified play speed. The OITF
SHALL map this on to the underlying protocol (HTTP or
RTSP) as the following sequence of DAE method calls:

data = <URI of the queued media item>;
play(<current play speed>);

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 305 (415)

seek(Integer pos) If the value of pos is outside the current media item, the
play position SHALL NOT be changed.

read/write String data Modification of this property SHALL cause any queued
media items to be discarded.

8.2.6 Scheduled content Multicast Streaming

This section provides details of mapping of the DAE APIs to the descriptions provided in the Protocol specification
[OIPF_PROT2] for APIs between the OITF and the Network over reference points UNIS-11, UNIS-13 and UNIT 17 for
Scheduled Content multicast streaming.

8.2.6.1 Conveyance Of Channel List

Service discovery description procedure as described in [OIPF_PROT2] section 6.1.3.1 enables the OITF to obtain the
URL to access the broadcast channel information. The OITF SHALL utilise UNIS-7 using this URL to obtain the
Broadcast Discovery Record.

8.2.6.2 Switching Channels

Methods Procedures
setChannel (Channel channel, The setChannel method of the video/broadcast object
Boolean trickplay, String SHALL be used to initiate a broadcast session or switch

contentAccessDescriptorUrL) channels. If the channel has an idType of ID_IPTV_URI, the

OITF SHALL send and IGMP Leave and an IGMP Join request
on the UNIS-13 as described in [OIPF_PROT?2] section 8.1.1.1.

8.2.6.3 End broadcast service

Methods Procedures

release() The release method of the video/broadcast object causes the
OITF to perform an IGMP Leave on the active broadcast
session as described in [OIPF_PROT?2] section 8.1.1.1

8.26.4 Network timeshift of broadcast services

Methods Procedures

pause() The pause method of the video/broadcast object causes the
OITF to perform an IGMP Leave on the active broadcast
session as described in [OIPF_PROT?2] section 8.1.1.1.

resume() The RTSP URL signalled by the data attribute SHALL be used
to initiate the process defined in [OIPF_PROT?2] section
7.1.1.1.1. The “data” attribute SHALL furthermore be updated
with the new URI after redirection requests (moved).

The value of the “scale” header in the RTSP PLAY message
SHALL be the value set by the most recent call to setSpeed(),
or 1.0 if the most recent call to setSpeed() set the playback
speed to 0 or setSpeed() has not been called.

If property oi tfNoRTSPSessionControl is set to true then the
RTSP messages DESCRIBE and SETUP are not used. If the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 306 (415)

play() method is called with a non-zero speed the property
oi tfRTSPSessionld is copied to the RTSP Sessionld
header for the RTSP PLAY request. If the

oi tfRTSPSessionld is undefined the play() method
SHALL fail.

After a successful response to the RTSP PLAY message has
been received, the OITF SHALL generate a
PlaySpeedChanged event indicating the actual playback
speed.

setSpeed(Number speed)

Sets current speed by using the “Scale” header in the RTSP
PLAY as described in [OIPF_PROT2] section 7.1.1.1.

After a successful response to the RTSP PLAY message has
been received, the OITF SHALL generate a
PlaySpeedChanged event indicating a new playback speed.

If playback is previously paused (either by a call to pause() or
by setting the playback speed to 0) then the new speed SHALL
NOT be applied until the resume () method is called, as
described above.

seek(Integer offset, Integer
reference)

Sets current play position based on the specified offset from the
given reference point, by using the “Range” parameter in the
RTSP PLAY as described in [OIPF_PROT2] section 7.1.1.1.

After a successful response to the RTSP PLAY message has
been received, the OITF SHALL generate a
PlayPositionChanged event indicating the new playback
position.

stopTimeShift()

The setChannel () method of the video/broadcast object
SHALL be used to initiate a broadcast session. If the channel
has an idType of ID_IPTV_URI, the OITF SHALL send and
IGMP Join request on the UNIS-13 as described in
[OIPF_PROTZ2] section 8.1.1.1.

read/write String data

This property holds the RTSP URI for the content item.

Note that all the remaining properties listed under section 8.2.5 SHALL be supported as described.

8.3 URI Schemes and their usage

The following table lists possible URL schemas and their usages within DAE documents (XHTML, JavaScript, images,
and references to A/V content). If a certain URL scheme is supported, the corresponding protocols to an URL scheme
SHALL be supported as defined by the reference(s)

Table 14: URI schemes and usages

URI Usage
scheme

Reference Comments

dvb-mcast Scheduled content delivery DVB-MCAST URI scheme as A URL to refer to a

defined by Annex Al of [TS scheduled content
102 539] channel supported
by the OITF and
delivered via
multicast.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 307 (415)

URI Usage Reference Comments
scheme
dvb Application launching Locator for applications in The orgid and appid
SD&S as defined by section encoded in the DVB
6.3.3 of [TS 102 851] URI are compared
with the applications
signalled in SD&S to
identify one with the
same orgid and
appid.
Non-realtime downloaded Section 6 of [TS 102 851] Non-realtime
content downloaded content
igmp Scheduled content Annex F of [OIPF_PROT2]. The transport IP
Multicast Address to
access the service
as defined in [DVB-
IPTV].
http and Transport of DAE Section 5.3.3.1 of A URL to refer
https documents [OIPF_PROT?2] documents
Section 5.3 of [CEA-2014-A] supported by DAE.
Section 5 of [OIPF_CSP2]
Unicast streaming or HAS specification A URL to refer to the
download over HTTP [OIPF_HAS?] MPD.
Annex F of [OIPF_PROTZ2] A Content URL
specified in the data
attribute of A/V
Control object as
crid COD streaming Section 4.3 of [OIPF_METAZ2] defined in section
7.14.
A Content URL
Programme identification Section 4.3 of [OIPF_METAZ?] specified in a
via BCG Content Access
Descriptor described
sip Unicast streaming over Annex F of [OIPF_PROT?2] in Annex E.
RTP (“sip-rtsp-rtp-udp”)
Unicast streaming over
UDP (“sip-rtsp-udp”)
rtsp Unicast streaming control
URI Recordings Section 7.10.5.1 of this The format of the
scheme for specification. URI is outside the
recordings scope of this

specification except
that:

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 308 (415)

URI Usage Reference Comments
scheme

e The scheme
SHALL NOT
be one that
is included
in this
specification

e The URI
SHALL NOT
include a
fragment

URI Downloaded content Section 7.4.4.1 of this The format of the
scheme for specification. URI is outside the
downloaded scope of this
content specification except
that:

e The scheme
SHALL NOT
be one that
is included
in this
specification

e The URI
SHALL NOT
include a
fragment

8.3.1 Media Fragments Support

Section 8.1 of [OIPF_DAE2_WEB] requires support for temporal clipping based on Normal Play Time as defined in
section 4.2.1 of the Media Fragments URI specification. URLs including these temporal clipping fragments SHALL be
supported as follows;

= HTTP URIs including a temporal clipping fragment SHALL be supported. Mapping from time to byte position
as defined in section 2.1 (“*UA mapped byte ranges”) of [MEDIA_FRAGMENTS_HTTP] SHOULD be
supported. Mapping of normal play time to byte ranges in the server defined in section 2.2 (“server mapped byte
ranges”) of [MEDIA_FRAGMENTS_HTTP] MAY be supported.

= |f the OITF supports RTSP then RTSP URIs including a temporal clipping fragment SHALL be supported. The
normal play time specified in the URI SHALL be used by the OITF to determine the starting time and ending
time of the media. The normal play time SHOULD be mapped to the RTSP protocol as define in Annex A
(“Processing media fragment URIs in RTSP”) of [MEDIA_FRAGMENTS_HTTP].

= |fthe OITF has local PVR capability then the OITF SHALL support use of temporal clipping fragments with the
URI returned by the “uri’ property of the Recording class. This specification is intentionally silent about how
mapping from normal play time to byte positions within the recorded content is performed.

= If the OITF has support for downloading content then the OITF SHALL support use of temporal clipping
fragments with the URI returned by the ‘uri’ property of the Download class. This specification is intentionally
silent about how mapping from normal play time to byte positions within the downloaded content is performed.

The begin time SHALL behave as start-of-media and the end time SHALL behave as end-of-media. If the value of
temporal fragment interval is changed then there will be no change in the play state unless the interval is changed so that
the current play position is outside the interval.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 309 (415)

8.4 Mapping from APIs to Content Formats

8.4.1

Character Conversion

Except for the getSIDescriptors() method (see section 7.16.2.4), the OITF SHALL translate all characters extracted from
DVB Sl tables and descriptors into their UTF-16 equivalent when exposing the character in a JavaScript character or
string object. In addition, the following rules SHALL apply:

= The character table of text fields in DVB SI SHALL be determined as specified in EN 300 468 Annex A. The
default character table MAY be determined by the local broadcast system.

= The bytes denoting the character table and the control codes for character emphasis on and off SHALL be
filtered out by the OITF.

= The control codes for "CR/LF" SHALL be expanded to the two separate UTF-16 characters U+000D and

U-+000A.
8.4.2

AVComponent

AVComponent objects represent the components in a stream. For an MPEG-2 transport stream not delivered via adaptive
streaming, the set of components SHALL be the audio, video and subtitle components listed in the PMT of the service.
For content in the MP4 file format not delivered via adaptive streaming, the set of components SHALL be the audio,
video and subtitle tracks listed in the “moov” box. For content delivered via adaptive streaming, A/V Component objects
SHALL correspond to adaptation sets in the MPD.

The following table shows the mapping from the properties of the AVComponent class to the data carried inside the
MPEG-2 TS and MP4 file format.

Type: One of the
following constants
COMPONENT_TYPE_
VIDEO /
COMPONENT_TYPE_
AUDIO /
COMPONENT_TYPE_
SUBTITLE

e Avalue of 0x02 or Ox1B in the
stream_type field in the PMT - VIDEO.

e Avalue of 0x03 or Ox11 in the
stream_type field in the PMT - AUDIO.

e Avalue of 0x06 in the stream_type field
in the PMT and the presence of a
DTS_audio_stream_descriptor in the ES
loop in the PMT - AUDIO.

e Avalue of 0x06 in the stream_type field
in the PMT and the presence of an
AC3_descriptor or an
Enhanced_AC3_descriptor in the ES
loop in the PMT - AUDIO.

e Avalue of 0x06 in the stream_type field
in the PMT and the presence of a
subtitling_descriptor in the ES loop in the
PMT - SUBTITLES.

e Avalue of 0x06 in the stream_type field
in the PMT and the presence of a

VisualSampleEntry
(handler_type ="vide")
>
COMPONENT_TYPE
_VIDEO

Track has an
AudioSampleEntry
(handler_type =
“soun”) ->
COMPONENT_TYPE
_AUDIO

Property MPEG-2 TS MPEG-2 TS MP4 FF MPEG DASH
Name and Type With DVB-SI Without DVB-SI SDT
component_ and EIT
descriptor in SDT
and/or EIT
Name: componentTag The contents of the component_tag field in the Not defined The value of the id
) stream_identifier_descriptor in PMT attribute in the
Type: Integer AdaptationSet (if
provided)

Name: pid The PID of the stream in the PMT trackiD Not defined
Type: Integer
Name: type May be derived as follows: Track has a Defined by the value

of the ‘@contentType’
attribute

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 310 (415)

Property

Name and Type

MPEG-2 TS MPEG-2 TS
With DVB-SI Without DVB-SI SDT
component_ and EIT
descriptor in SDT
and/or EIT

MP4 FF

MPEG DASH

teletext_descriptor in the ES loop in the
PMT and an entry in that descriptor with
Teletext_type set to 0x02 or 0x05 >
SUBTITLES.

Name: encoding

Type: A string
identifying the video or
audio format as
defined in section 3 of
[OIPF_MEDIA2] or the
subtitle format as
defined in section
7.16.5.2.1

Property type is COMPONENT_TYPE_VIDEO

-> “video/mpeg” or “video/mp2t”.

Track has a sample
description type

“avcl” - “video/mp4”.

Property type is COMPONENT_TYPE_AUDIO

A value of 0x03 in the stream_type field in the PMT
-> “audio/mpeg”.

A value of 0x11 in the stream_type field in the PMT
and the profile_and_level field in that descriptor
indicates MPEG-4 AAC or MPEG-4 HE AAC >
“audio/mp4”.

A value of 0x11 in the stream_type field in the PMT
and the profile_and_level field in that descriptor
indicates MPEG-4 HE AAC v2 - “audio/aacp”.

A value of 0x06 in the stream_type field in the PMT
and the presence of a
DTS_audio_stream_descriptor in the ES loop in the
PMT - “audio/vnd.dts”.

A value of 0x06 in the stream_type field in the PMT
and the presence of an AC3_descriptor in the ES
loop in the PMT - “audio/ac3”.

Track has a sample
description type
“mp4a” >
“audio/mp4”

Property type is COMPONENT_TYPE_SUBTITLE

A value of 0x01 in subtitling_type field of the
subtitling_descriptor in the ES loop of the PMT >
“EBU-SUBT".

A value of 0x10 or 0x11 or 0x12 or 0x14 in the
subtitling_type field of the subtitling_descriptor in
the ES loop of the PMT - “DVB-SUBT".

A value of 0x20 or 0x21 or 0x22 or 0x24 in the
subtitling_type field of the subtitling_descriptor in
the ES loop of the PMT - “DVB_SUBT” (the
hearinglmpaired property in the derived
AVSubtitleComponent would be set to true).

The PMT contains a caption_service_descriptor
with a digital_cc flag having the value of 1 for at
least one of the represented caption services ->
“CEA-SUBT".

Track has a handler-
type “text” > “3GPP-
TT".

Defined by the
‘@codecs’ attribute

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 311 (415)

Type: Number
containing width
divided by height as a
decimal

Only defined for video
components.

stream_content and
component_type fields
in the
component_descriptor.

Property MPEG-2 TS MPEG-2 TS MP4 FF MPEG DASH
Name and Type With DVB-SI Without DVB-SI SDT
component_ and EIT
descriptor in SDT
and/or EIT
Name: encrypted May be derived from any of the following: Not defined
Type: Boolean . Presence of a CA_descriptor in the PMT
in the program information loop.

Presence of a CA_descriptor in the PMT in the

elementary stream information loop describing the

stream.
Name: aspectRatio Derived from the Undefined Not defined Defined by the value

of the ‘@par’ attribute

Name: language

Type: String containing
an 1SO 639-2
language code as
defined in [ISO 639-2]

Property type is COMPONENT_TYPE_AUDIO

For audio components, the contents of the
ISO_639_language_code field in the

The contents of the
language field in the
media header “mdhd”

Defined by the value
of the ‘@lang’
attribute in the MPD,
whether set explicitly
or inherited. The
contents of the
language field in the

Type: Number
indicating 5 for 5.1, 7
for 7.1, 2 for stereo

Only defined for audio
components.

Only defined for audio ISO_639_language_descriptor In the ES loop of the
and subtitle PMT unless overridden by the of the track. ‘mdhd” of the track
components. ISO_639_language_code field in the SHALL be ignored.
supplementary_audio_descriptor.
Property type is COMPONENT_TYPE_SUBTITLE
For subtitles, the contents of the The contents of the
ISO_639_language_code field in the language field in the
subtitling_descriptor or teletext_descriptor, as media header “mdhd”
appropriate. of the track.
Name: True if any of the following is true: Not defined
audioDescription)))
e There is an audio component with an
Type: Boolean - True if ISO_639_language_descriptor in the
is component is an PMT with the audio_type field set to 0x03
audio description)
]) e Thereisa
Only defined for audio supplementary_audio_descriptor with the
components. editorial_classification field set to 0x01
. There is an ac-3_descriptor or an
enhanced_ac-3_descriptor with a
component_type field with the
service_type flags set to Visually
Impaired.
Otherwise false.
Name: audioChannels Not defined Derived from the

contents of the Audio
Channel Configuration
element

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 312 (415)

Property MPEG-2 TS MPEG-2 TS MP4 FF MPEG DASH
Name and Type With DVB-SI Without DVB-SI SDT
component_ and EIT
descriptor in SDT
and/or EIT
Name: True if one of the following is true: Not defined Not defined

hearinglmpaired . . .)
e There is a subtitling_descriptor with the

Type: Boolean - Has subtitling_type field set to 0x20, 0x21,
value true if the stream 0x22, 0x23 or 0x24.

is intended for the) .)
hearing-impaired (e.g. e Thereis ateletext_descriptor with a
contains a written teletext_type field with a value of Ox05.

description of the
sound effects), false
otherwise.

Only defined for
subtitle components.

NOTE: This specification intentionally does not define a mapping from the properties of the AVComponent class to the
HAS MPD.

8.4.3 Channel

Channel objects represent data streams carrying content that the OITF can tune to. In some cases the channel object may
have been explicitly created by an application but usually they will have been created when the OITF discovers the
channel when performing a scan or reading an SD&S file. The following tables show the mapping from the properties of
the Channel class to the source of the data for that property.

All references in the tables to the SDT are for the SDT Actual table (i.e. the SDT carried in the MPEG2-TS with a PID
value of 0x0011 and a table_id value of 0x42, as defined in EN 300 468 [EN 300 468]), and references to the
BroadcastDiscovery and PackageDiscovery are to the elements of those names in SD&S.

For channels of type ID_DVB_*:

Property name Source Comment
channelType Assigned by the Assigned by the terminal to TYPE_TV or TYPE_RADIO
terminal. based on the service type signalled in SDT/service

descriptor/service type or undefined otherwise.

idType Assigned by the Assigned by the terminal based on the type of channel, if
terminal or by the the channel was discovered by a channel scan, or by the
application. application using the value passed in the

createChannelObject() method.

ccid Assigned by the Unique identifier for the channel
terminal.

tuneriD Assigned by the Unique identifier for the tuner
terminal.

onid Assigned by the Assigned by the terminal from SDT.onid or by the
terminal or by the application using the value passed in to the
application. createChannelObject() method.

nid Assigned by the Assigned by the terminal as follows:
terminal

e If during the terminal configuration process, a
network id value was selected (either explicitly

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 313 (415)

Property name

Source

Comment

or implicitly) and the NIT subtable with that
network_id value was used by the terminal to
discover the correct delivery system descriptor of
this channel, then the value of this property shall
be that network_id value.

e Otherwise, if there is exactly one NIT 'actual’
subtable in the Transport Stream that is carrying
the channel then the value of this property shall
be the network_id in that subtable. Terminals are
not required to update the value if it changes
dynamically in the broadcast Transport Stream.

e Otherwise the value shall be undefined.

tsid Assigned by the Assigned by the terminal from SDT.tsid or PAT.tsid or by
terminal or by the the application using the value passed in to the
application. createChannelObject() method.
sid Assigned by the Assigned by the terminal from SDT.sid or by the
terminal or by the application using the value passed in to the
application. createChannelObject() method.
sourcelD Assigned by the Takes the value undefined
terminal.
freq Assigned by the Takes the value undefined
terminal.
cni Assigned by the Takes the value undefined
terminal.
name Assigned by the Assigned by the terminal from SDT/service
terminal. descriptor/service name or undefined for Channel
objects created by calls to the createChannelObject()
method.
majorChannel Assigned by the Either takes the value undefined or, in markets where
terminal. logical numbers are used, takes the value of the logical
channel number for the channel as signalled in the
broadcast specification for that market.
minorChannel Assigned by the Takes the value undefined
terminal.
dsd Assigned by the Assigned by the application using the delivery system
terminal or by the descriptor passed in to the createChannelObject()
application. method, or implementation dependent in all other cases.
favourite Assigned by the
terminal.
faviDs Assigned by the
terminal.
locked

Assigned by the
terminal.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 314 (415)

Property name Source Comment
manualBlock Assigned by the
terminal.
ipBroadcastlID Assigned by the Takes the value undefined
terminal.
channelMaxBit Assigned by the Takes the value undefined
Rate terminal.
channel TTR Assigned by the Takes the value undefined
terminal.
recordable Assigned by the Implementation dependent
terminal.
longName Assigned by the Implementation dependent
terminal.
description Assigned by the Implementation dependent
terminal.
authorised Assigned by the Implementation dependent
terminal.
genre Assigned by the Implementation dependent
terminal.
hidden Assigned by the If the DVB broadcast system supports a logical channel
terminal or by the number mechanism that can identify channels that are
application. not expected to be offered to the user in a channel list
then the value of this property should be derived from
that signalling. Otherwise the value of this property is
implementation dependent.
NOTE This specification does not itself include a logical
channel number mechanism for channels of type ID_
DVB_*.
logoURL Assigned by the Implementation dependent
terminal.
isHD Assigned by the Assigned by the terminal to true or false based on the
terminal service type signalled in SDT/service descriptor/service
type or undefined otherwise.
is3D

Assigned by the
terminal

Assigned by the terminal to true or false based on the
service type signalled in SDT/service descriptor/service
type or undefined otherwise.

For channels of type ID_1PTV_SDS:

Property name

Source

Comment

channelType

Assigned by the
terminal.

Assigned by the OITF based on the value signalled in
SDT/service descriptor/service type in the stream if
BroadcastDiscovery/ServiceList/SingleService/SI@Prima

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 315 (415)

Property name

Source

Comment

rySiSource is “Stream”, otherwise assigned based on the
value of
BroadcastDiscovery/ServiceList/SingleService/SI@Servic
eType (if present).

Otherwise, or if not known, set to undefined.

idType Assigned by the Assigned by the OITF to ID_IPTV_SDS if the channel
terminal or by the was discovered using SD&S metadata, or assigned by
application. the application using the value passed in the
createChannelObject() method.
ccid Assigned by the Unique identifier for the channel
terminal.
tuneriD Assigned by the Unique identifier for the tuner if relevant or set to
terminal. undefined
onid Assigned by the Assigned by the OITF to the value signalled in
terminal. BroadcastDiscovery/ServiceList/SingleService/DVBTriple
t@OrigNetld
nid Assigned by the Implementation dependent.
terminal.
tsid Assigned by the Assigned by the OITF to the value signalled in
terminal. BroadcastDiscovery/ServiceList/SingleService/DVBTriple
t@TsSId
sid Assigned by the Assigned by the OITF to the value signalled in
terminal. BroadcastDiscovery/ServiceList/SingleService/DVBTriple
t@Serviceld
sourcelD Assigned by the Takes the value undefined
terminal.
freq Assigned by the Takes the value undefined
terminal.
cni Assigned by the Takes the value undefined
terminal.
name Assigned by the Assigned by the OITF from SDT/service
terminal. descriptor/service name in the stream if
BroadcastDiscovery/ServiceList/SingleService/SI@Prima
rySiSource is “Stream”, otherwise set to
BroadcastDiscovery/ServiceList/SingleService/SI/Name
(if present), otherwise set to
BroadcastDiscovery/ServiceList/SingleService/Textuallde
ntifier@ServiceName
majorChannel Assigned by the Assigned by the OITF from

terminal.

PackageDiscovery/Package/Service/LogicalChannelNum
ber (if present), otherwise takes the value undefined

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 316 (415)

Property name Source Comment
minorChannel Assigned by the Takes the value undefined
terminal.
dsd Assigned by the Takes the value undefined
terminal.
favourite Assigned by the
terminal.
favIDs Assigned by the
terminal.
locked Assigned by the
terminal.
manualBlock Assigned by the
terminal.
ipBroadcastlID Assigned by the Assigned by the OITF to the DVB textual service
terminal or by the identifier of the IP broadcast service, specified in the
application. format “ServiceName.DomainName” with the
ServiceName and DomainName taken from the attributes
of
BroadcastDiscovery/ServiceList/SingleService/Textuallde
ntifier, or assigned by the application using the value
passed in to the createChannelObject() method
channelMaxBit Assigned by the Assigned by the OITF to the value provided in
Rate terminal. BroadcastDiscovery/ServiceList/SingleService/MaxBitrat
e (if present), otherwise undefined
channel TTR Assigned by the Assigned by the OITF to the value provided in
terminal. BroadcastDiscovery/ServiceList/SingleService/TimeToRe
negotiate (if present), otherwise undefined
recordable Assigned by the Implementation dependent
terminal.
longName Assigned by the Set by the OITF to the Name element that is a child of the
terminal. BCG Servicelnformation element describing the
channel, where the length attribute of the Name element
has the value ‘long’
description Assigned by the Set by the OITF to
terminal. BroadcastDiscovery/ServiceList/SingleService/Sl/Descrip
tion (if present), otherwise set to the
ServiceDescription element that is a child of the BCG
Servicelnformation element describing this channel.
authorised Assigned by the Implementation dependent
terminal.
genre Assigned by the Set by the OITF to

terminal.

BroadcastDiscovery/ServiceList/SingleService/SI/Content
Genre (if present), otherwise set to the values of any
ServiceGenre elements that are children of the BCG

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 317 (415)

Property name

Source

Comment

Servicelnformation element describing the channel.

hidden Assigned by the Implementation dependent
terminal or by the
application.
logoURL Assigned by the Set by the OITF to the value of the first Logo element
terminal. that is a child of the BCG Servicelnformation element
describing the channel, when this element specifies the
URL of an image.
isHD Assigned by the Assigned by the terminal to true or false based on the
terminal. service type signalled in SDT/service descriptor/service
type if
BroadcastDiscovery/ServiceList/SingleService/SI@Prima
rySlSource is “Stream”, otherwise assigned based on the
value of
BroadcastDiscovery/ServiceList/SingleService/SI@Servic
eType (if present).
Otherwise, or if not known, set to undefined.
is3D Assigned by the terminal to true or false based on the

Assigned by the
terminal.

service type signalled in SDT/service descriptor/service
type if
BroadcastDiscovery/ServiceList/SingleService/SI@Prima
rySlSource is “Stream”, otherwise assigned based on
the value of
BroadcastDiscovery/ServiceList/SingleService/SI@ Servic
eType (if present).

Otherwise, or if not known, set to undefined.

For channels of type ID_IPTV_URI:

Property name

Source

Comment

channelType Assigned by the Takes the value undefined.
terminal.

idType Assigned by the Assigned by the application using the value passed in the
application. createChannelObject() method.

ccid Assigned by the Unique identifier for the channel
terminal.

tuneriD Assigned by the Unique identifier for the tuner if relevant or set to
terminal. undefined

onid Assigned by the application using the value passed in to

Assigned by the
terminal or by the
application.

the createChannelObject() method

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 318 (415)

Property name Source Comment
nid Assigned by the Implementation dependent
terminal
tsid Assigned by the Assigned by the application using the value passed in to
terminal or by the the createChannelObject() method
application.
sid Assigned by the Assigned by the application using the value passed in to
terminal or by the the createChannelObject() method
application.
sourcelD Assigned by the Takes the value undefined
terminal.
freq Assigned by the Takes the value undefined
terminal.
cni Assigned by the Takes the value undefined
terminal.
name Assigned by the Takes the value undefined
terminal.
majorChannel Assigned by the Takes the value undefined
terminal.
minorChannel Assigned by the Takes the value undefined
terminal.
dsd Assigned by the Takes the value undefined
terminal.
favourite Assigned by the
terminal.
favIDs Assigned by the
terminal.
locked Assigned by the
terminal.
manualBlock Assigned by the
terminal.
ipBroadcastliD Assigned by the Assigned by the application using the value passed in to
terminal. the createChannelObject() method
channelMaxBit Assigned by the Takes the value undefined
Rate terminal.
channelTTR Assigned by the Takes the value undefined
terminal.
recordable

Assigned by the
terminal.

Implementation dependent

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 319 (415)

Property name Source Comment

longName Assigned by the Takes the value undefined
terminal.

description Assigned by the Takes the value undefined
terminal.

authorised Assigned by the Implementation dependent
terminal.

genre Assigned by the Takes the value undefined
terminal.

hidden Assigned by the Implementation dependent
terminal or by the
application.

logoURL Assigned by the Takes the value undefined
terminal.

isHD Assigned by the If the channel is being received by the OITF, assigned by
terminal. the terminal to true or false based on:

e For MPEG2-TS content with service_descriptor
in SDT, the property takes the value as defined
for a channel of type ID_DVB_*.

e For content delivered using MPEG-DASH, the
property takes the value true if the MPD
AdaptationSet element height attribute is set to a
value greater than or equal to 720, false
otherwise.

Otherwise, it takes the value undefined.
is3D Assigned by the If the channel is being received by the OITF, assigned by
terminal. the terminal to true or false based on:

e For MPEG2-TS content with service_descriptor
in SDT, the property takes the value as defined
for the channel of type ID_DVB_*.

e For content delivered using MPEG-DASH, the
property takes the value true if 3D video is
indicated in the MPD AdaptationSet element
FramePacking attribute, false otherwise.

Otherwise, it takes the value undefined.
8.4.4 Programme, ScheduledRecording, Recording and Download

The following table defines the mapping between the properties of the Programme, ScheduledRecording,
Recording and Download classes.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 320 (415)

Property name Source Programme ScheduledReco Recording Download
Class Property rding Class Class Property Class Property
Property
state Assigned by the N/A N/A Assigned and Assigned by the
terminal. updated by the terminal, section
terminal as 7.4.4.1 of the
recording is present
carried out. document.
id Assigned by the N/A N/A Unique internal Unique internal
terminal. identifier for identifier for
recordings. downloaded
content.
startPadding Assigned by the N/A Default value Derived by the N/A
terminal or the assigned by the terminal from the
application. terminal; may be corresponding
overridden by property on the
the application. ScheduledRecor
ding object.
endPadding Assigned by the N/A Default value Derived by the N/A
terminal or the assigned by the terminal from the
application. terminal; may be corresponding
overridden by property on the
the application. ScheduledRecor
ding object.
repeatDays Set by the N/A The days on Derived by the N/A
application which the terminal from the
recording will be corresponding
repeated as property on the
assigned by the ScheduledRecor
application ding object.
name Assigned by the Assigned by the Derived from Derived by the Assigned by the
terminal. terminal from Programme terminal from the terminal from
EIT/short_event_ object when corresponding CADD.Title.
descriptor/event recording is property on the
name scheduled. ScheduledRecor
ding object.
For manual
recordings,
assigned by the
terminal (see
note).
description Assigned by the Assigned by the Derived from Derived by the Assigned by the
terminal. terminal from Programme terminal from the terminal from
ElT/short_event_ object when corresponding CADD.Synopsis
descriptor/descri recording is property on the if present.
ption scheduled ScheduledRecor
ding object.
longDescript Assigned by the Assigned by the Derived from Derived by the N/A
1on terminal. terminal from Programme terminal from the
ElT/extended_ev object when corresponding
ent_descriptor/te recording is property on the
xt scheduled ScheduledRecor

ding object.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 321 (415)

Property name

Source

Programme

ScheduledReco

Recording

Download

Class Property rding Class Class Property Class Property
Property
startTime Assigned by the Assigned by the Derived from Derived by the Assigned by the
terminal or terminal from Programme terminal from the terminal based
application. ElT/event/start_ti object when corresponding on the startTime
me. recording is property on the argument of
scheduled. ScheduledRecor RegisterDownloa
ding object. d().
Assigned by the
application for
recordings
scheduled using
the recordAt()
method.
For manual
recordings
initiated via a
native Ul,
assigned by the
terminal (see
note).
recordingSta Assigned by the N/A N/A The actual start N/A
rtTime terminal. time of the
recording.
timeElapsed Assigned by the N/A N/A N/A Assigned by the
terminal. terminal.
timeRemainin Assigned by the N/A N/A N/A Assigned by the
9 terminal. terminal.
duration Assigned by the Assigned by the Derived by the Derived by the N/A
terminal or terminal from terminal from the terminal from the
application. ElT/event/duratio duration property corresponding
n. of the property on the
Programme ScheduledRecor
object when the ding object.
recording is
scheduled.
Assigned by the
application for
recordings
scheduled using
the recordAt()
method.
For manual
recordings
initiated via a
native Ul,
assigned by the
terminal (see
note).
recordingDur Assigned by the N/A N/A The actual N/A
ation terminal. duration of the
recording.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 322 (415)

Property name

Source

Programme

ScheduledReco

Recording

Download

Class Property rding Class Class Property Class Property
Property
channel Assigned by the Reference to Derived by the Derived by the N/A
terminal. broadcast terminal from terminal from the
channel where the ccid property corresponding
content is of the property on the
available. Setto Programme ScheduledRecor
broadcast object when the ding object.
content location. recording is
scheduled.
Derived by the
terminal from the
value passed by
the application
for recordings
scheduled using
the recordAt()
method.
For manual
recordings
initiated via a
native Ul,
assigned by the
terminal (see
note).
channel 1D Assigned by the Populated from N/A N/A N/A
terminal. ccid of the
channel carrying
this programme.
programmelD Assigned by the If a programme Derived from Derived by the N/A
terminal. CRID is not Programme terminal from the
provided in the object when corresponding
EIT for the recording is property on the
programme then scheduled ScheduledRecor
this shall be ding object.
assigned by the
terminal from
ElT/event_id and
it shall be
encoded as a
DVB URL
referencing a
DVB-SI event as
enabled by
section 4.1.3 of
[OIPF_METAZ2].
Otherwise this is
outside the
scope of the
present
document.
programme DT Assigned by the Assigned by the Derived from Derived by the N/A
ype terminal. terminal. Programme terminal from the
object when corresponding
recording is property on the
scheduled ScheduledRecor

ding object.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 323 (415)

Property name

Source

Programme

ScheduledReco

Recording

Download

Class Property rding Class Class Property Class Property
Property
parentalRati Assigned by the Populated from Derived from Derived by the Assigned by the
ngs terminal ElT/parental_rati Programme terminal from the terminal from
ng_descriptor/rat object when parentalRating
ing, where recording is property on the CADD.parentalR
present. scheduled. ScheduledRecor ating if present.
ding object.
For manual
recordings
initiated via a
native Ul,
assigned by the
terminal (see
note).
contentlD Assigned by the N/A N/A N/A Assigned by the
terminal. terminal from
CADD.contentID
if present.
totalSize Assigned by the N/A N/A N/A Assigned by the
terminal. terminal from
CADD.contentU
RL@size, then
updated to
actual size on
disk at end of
download.
contentURL Assigned by the N/A N/A N/A Assigned by the
terminal. terminal from
CADD.contentU
RL.
drmControl Assigned by the N/A N/A N/A Assigned by the
terminal. terminal from
CADD.DRMCont
rolinformation if
present.
transferType Assigned by the N/A N/A N/A Assigned by the
terminal. terminal from
CADD.contentU
RL.transferType
originSite Assigned by the N/A N/A N/A Assigned by the
terminal. terminal from
CADD.originSite
originSiteNa Assigned by the N/A N/A N/A Assigned by the
me terminal. terminal from
CADD.originSite
Name if present.
iconURL Assigned by the N/A N/A N/A Assigned by the

terminal.

terminal from
CADD.iconURL
if present.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 324 (415)

Property name

Source

Programme

ScheduledReco

Recording

Download

Class Property rding Class Class Property Class Property
Property
lTongName Assigned by the For Programme Derived from Derived by the N/A
application objects created Programme terminal from the
using the object when longName
createprogramm recording is property on the
eObject() scheduled. ScheduledRecor
method, this may ding object.
be set by the
application.
No standardised
mapping in DVB-
Sl
episode Assigned by the For Programme Derived from Derived by the N/A
application objects created Programme terminal from the
using the object when episode property
createprogramm recording is on the
eObject() scheduled. ScheduledRecor
method, this may ding object.
be set by the
application.
No standardised
mapping in DVB-
Sl
totalEpisode Assigned by the For Programme Derived from Derived by the N/A
S application objects created Programme terminal from the
using the object when totalEpisodes
createprogramm recording is property on the
eObject() scheduled. ScheduledRecor
method, this may ding object.
be set by the
application.
No standardised
mapping in DVB-
Sl
blocked Assigned by the Set based on N/A Set based on N/A
terminal parental control parental control
settings for settings
broadcast
showType No standardised N/A No standardised N/A
mapping in DVB- mapping in DVB-
Sl. Sl.
subtitles Assigned by the Set in the N/A Set in the N/A
terminal presence of presence of
ElT/subtitle ElT/subtitle
component component
descriptor for descriptor for
broadcast broadcast
content for content within
content within scope of
schedule. schedule when

the recording
starts.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 325 (415)

Property name Source Programme ScheduledReco Recording Download
Class Property rding Class Class Property Class Property
Property
isHD Assigned by the Set in the N/A Set in the N/A
terminal presence of an presence of an
EIT/component ElT/component
descriptor with descriptor with
stream_content stream_content
value 0x01 or value 0x01 or
0x05 and a 0x05 and a
component_type component_type
value indicating indicating “high
“high definition definition video”
video” as defined as defined in
in table 26 of table 26 of [EN
[EN 300 468], for 300 468], for
broadcast broadcast
content within content within
scope of scope of
schedule. schedule when
the recording
starts.
audioType Assigned by the Derived from N/A Derived from N/A
terminal EIT/component ElT/component
descriptors with descriptors with
stream_content stream_content
value 0x02, 0x04 value 0x02, 0x04
or 0x06 for or 0x06 for
broadcast broadcast
content within content within
scope of scope of
schedule. schedule when
the recording
starts.
isMultilingu Assigned by the Set when the set N/A Set when the set N/A
al terminal of language of language
codes for codes for
EIT/component ElT/component
descriptors with descriptors with
stream_content stream_content
value 0x02, 0x04 value 0x02, 0x04
or 0x06 contains or 0x06 contains
more than one more than one
language code language code
for broadcast for broadcast
content within content within
scope of scope of
schedule. schedule when
the recording
starts.
genre Assigned by the Populated from N/A For broadcast N/A
terminal ElT/content_des content,
criptor/content_n populated from
ibble_level_1 for ElT/content_des
broadcast criptor/content_n
content. ibble_level_1
when the
recording starts.
hasRecording Assigned by the Set if the content N/A N/A N/A

terminal

item is already
recorded on
Terminal based
storage.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 326 (415)

Property name Source Programme ScheduledReco Recording Download
Class Property rding Class Class Property Class Property
Property
audiolLanguag Assigned by the Derived from N/A Derived from N/A
€s terminal language language
code(s) present code(s) present
in in
ElIT/component ElT/component
descriptors with descriptors with
stream_content stream_content
value 0x02, 0x04 value 0x02, 0x04
or 0x06 for or 0x06 for
broadcast broadcast
content within content within
scope of scope of
schedule. schedule when
the programme
is recorded..
subtitlelLang Assigned by the Derived from N/A Derived from N/A
uages terminal language language
code(s) present code(s) present
in in
ElIT/component ElT/component
descriptors with descriptors with
stream_content stream_content
value 0x03 for value 0x03 for
broadcast broadcast
content within content within
scope of scope of
schedule. schedule when
the programme
is recorded.
locked Assigned by the Set based on N/A Set based on N/A
terminal parental control parental control
information information
isManual Assigned by the N/A N/A Set based on N/A
terminal how the
recording was
scheduled — see
the descriptions
of the record()
and
recordAt()
methods in
section 7.10.1.1.
doNotDelete Assigned by the N/A N/A May be set by N/A
application or the the terminal from
terminal a native Ul, or by
an application.
saveDays Assigned by the N/A N/A May be set by N/A
application or the the terminal from
terminal a native Ul, or by
an application.
saveEpisodes Assigned by the N/A N/A May be set by N/A

application or the
terminal

the terminal from
a native Ul, or by
an application.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 327 (415)

Property name Source Programme ScheduledReco Recording Download
Class Property rding Class Class Property Class Property
Property
is3D Assigned by the For MPEG-2 TS For MPEG-2 TS
terminal content with content with
DVB-S DVB-SI
component_desc component_desc
riptor in SDT riptor in SDT
and/or EIT: True and/or EIT: True
if the if the
component_desc component_desc
riptor in EIT, or if riptor in EIT, or if
not available, in not available, in
SDT indicates a SDT indicates a
3D video format, 3D video format,
including values including values
0x80, 0x81, 0x82 0x80, 0x81, 0x82
or 0x83. or 0x83.
isEncrypted Assigned by the N/A N/A Assigned and Derived from
terminal updated by the DRM specific
terminal as data in content
recording is
carried out.
DRMSystemlds Assigned by the N/A N/A Assigned and Derived from
terminal updated by the DRM specific
terminal as data in content
recording is
carried out.
getDRMPrivat Assigned by the N/A N/A Assigned and Derived from
eData terminal

updated by the
terminal as
recording is
carried out.

DRM specific
data in content

Where there are multiple language versions of a text field derived from DVB-SI tables, the terminal should select one in
accordance with pre-defined user preferences.

The following table shows the mapping from the properties of Download and Recording class to the data carried inside
the MPEG-2 TS and MP4 file format.

Property name

MPEG-2 TS

With DVB-SI

component_descriptor in

SDT and/or EIT

MPEG-2 TS

Without DVB-SI SDT and

EIT

MP4 FF

CENC

isEncrypted True if a CA_descriptor is present in the PMT: True, if the scheme
. . . type set to ‘cenc’ and
. in the program information loop. scheme version set to
: : . . 0x00010000 and
. gtrr:ena;.elementary stream information loop describing a default_isEncrypted
set to Ox1 in the Track
Note: Some channels may have a static PMT but the content may Encryption Box (see
not be encrypted. As the transport scrambling control bits in TS note 1)
packet header are not checked, the property gives only an
indication. T
DRMSystemlds CA_system_ID in CA_descriptors in the PMT UUID in SystemID in
the Protection System
Specific Header box
(see note 2 and note
3)
getDRMPrivateData Private data bytes in CA_descriptors in the PMT Data in the Protection

System Specific
Header box

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 328 (415)

NOTE 1: This specification does not handle the case where track common encryption information is overridden at sample
level.

NOTE 2: the DRMSystemlId retrieved from an ‘cenc’ protected file is by default an UID and returned as an UUID URN
as defined in RFC 4122. For example "urn:uuid:706D6953-656C-5244-4D48-656164657221".

NOTE 3: When the UUID is referring to a DRM managed by the OITF, the DRMSystemld and
getDRMPrivateData() mapping may be overridden. For example Marlin uses the UUID “urn:uid:69F908AF-
238 4816-46EA-910C-CD5DCCCBOA3A” in “‘cenc’ protected files. This UUID should be mapped to the OIPF
DRMSystemID for Marlin, i.e. “urn:dvb:casystemid:19188"

8.4.5 Exposing Audio Description streams as AVComponent objects

Section 7.16.5 defines the AVComponent class and the AVAudioComponent class, which defines various properties to
describe the audio stream, and section 8.4.2 provides information on how these properties are populated. This includes an
audioDescription boolean property which is set to true for audio streams that contain an audio commentary for the
people with a visual impairment. Audio description (AD) streams which contain such commentary may be delivered to
the terminal as either broadcast mix or receiver mix (see TS 101 154 [TS 101 154] Annex E for more information on how
this is done for MPEG2-TS streams).

Audio streams without audio description and audio streams with broadcast mix audio description SHALL be exposed to
the application using one AVAudioComponent object per audio stream. Broadcast mix audio description streams
SHALL have the audioDescription property set to true.

Receiver mix audio description streams have to be mixed in the terminal with a main audio stream. There may be
multiple main audio streams and multiple receiver mix audio descriptions streams. The supported combinations of main
audio stream and receiver mix audio description stream SHALL be determined by the OITF . Each combination SHALL
be exposed to the application as a separate AVAudioComponent object. The properties of this object SHALL be set as
follows:

= audioDescription SHALL be setto true.

= language SHALL be set to the language of the audio description stream.

= audioChannels SHALL be set to the number of audio channels in the combined stream.
= encrypted SHALL be set to true if either constituent stream is encrypted.

= componentTag and pid SHALL be set according to the main audio stream.

» type SHALL be set to COMPONENT_TYPE_AUDIO.

= If the encoding of the constituent streams is the same, then encoding SHALL be set accordingly otherwise it
SHALL be undefined.

Receiver mix audio description streams SHALL NOT be exposed to applications as separate AVAudioComponent
objects.

8.4.6 HTMLS5 Media Element Mapping

The following table defines the mapping that SHALL be used between the HTML5 AudioTrack and the MPEG-2
transport stream and 1SO BMFF system layers.

Attribute Summary System Layer
MPEG-2 TS ISO BMFF MPEG DASH
readonly Identifier of The contents of the track_id The value of the id attribute in the
attribute the track component_tag field in the AdaptationSet (if provided)
DOMString id; stream_identifier_descriptor
in PMT.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 329 (415)

readonly Category of “"unless the As defined in the HTML5 specification
attribute the track audioDescription property as referenced by [OIPF_DAE2_WEB].
DOMString of an AVComponent
kind; instance for this track would
be set to true in which case
“description”.
readonly Label of the
attribute track
DOMString
label,
readonly Language of The primary language subtag in the BCP47 string SHALL be set as defined in section 8.4.2
attribute the track above for the language property of AVComponent.
DOMString
language
attribute Is the track No mapping is appropriate
boolean enabled
enabled,;

The following table defines the mapping that SHALL be used between the HTMLS5 VideoTrack and the MPEG-2
transport stream and 1ISO BMFF system layers.

Attribute Summary System Layer
MPEG-2 TS ISO BMFF MPEG DASH
readonly Identifier of The contents of the track_id The value of the id attribute in the
attribute the track component_tag field in the AdaptationSet (if provided)
DOMString id; stream_identifier_descriptor
in PMT
readonly Category of As defined in the HTMLS5 specification
attribute the track as referenced by [OIPF_DAE2_WEB].
DOMString
kind,;
readonly ILabel of the
attribute track
DOMString
label;
readonly Language of Not defined in this document.
attribute the track
DOMString
language
attribute Is the track No mapping is appropriate.
boolean selected
selected;

The following table defines the mapping that SHALL be used between the HTMLS5 TextTrack and the MPEG-2 transport
stream, 1ISO BMFF and MPEG DASH system layers for streams where the type property of an AVComponent would be
COMPONENT_TYPE_SUBTITLE as defined above.

Attribute Summary System Layer
MPEG-2 TS 1ISO BMFF MPEG DASH
readonly attribute DOMString id; Identifier of The contents of the track_id The value of the

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 330 (415)

the track component_tag field in the id attribute in
stream_identifier_descriptor the
in PMT AdaptationSet
(if provided)
readonly attribute TextTrackKind kind Category of “subtitles” unless the “subtitles” “subtitles”
the track hearinglmpaired property of

an AVComponent instance
for this track would be set to
true in which case “caption”.

readonly attribute DOMString label; Label of the
track
readonly attribute DOMString Language of The primary language
language the track subtag in the BCP47 string
SHALL be set as defined in
section 8.4.2 above for the
language property of
AVComponent.
attribute boolean enabled; Is the track No mapping is appropriate.
enabled
attribute DOMString Type of the “" as defined in HTMLS5. “" as defined “* as defined in
inBandMetadataTrackDispatchType in-band in HTML5. HTMLS.
metadata

In all cases where the values in the above tables cannot be used (because necessary information is not provided or
because the value in the table is optional) the HTMLS5 specification as referenced by [OIPF_DAE2_WEB] SHALL
apply. NOTE: This is usually an empty string.

8.5 DLNA RUI Remote Control Function implementation

This section aims to give guidelines to the DAE application developer suggesting how the DAE application should be
implemented to use a DLNA Remote Ul Function, covering the following areas:

= Relationship between DAE application and control Ul
= XML Ul Listing Provisioning
= Retrieving the Control Ul

= Receiving a message (control command) from the Remote Control Device and Responding to a message from
the Remote Control Device

= Notification to the Remote Control Device
= Multiple application handling

The sections below provide more details including example code in each case.

8.5.1 Relationship between DAE application and control Ul

It is assumed that the service provider authors both the DAE application and the control Ul to run on the Remote Control
Device that communicates with the DAE application. It means that the DAE application and the control Ul are managed
by one service provider, and the DAE application could handle the HTTP request message which comes from the control
Ul currently being rendered in the DLNA RUIC.

8.5.2 XML Ul Listing Provisioning
There are two kinds of XML Ul Listing (details are described in section 5.1.1.5 of [CEA-2014-A]):

= The OITF’s built in XML Ul Listing, that originates from the OITF (DLNA RUIS) and which is usually pre-
defined by the device vendor,

= The Server Side XML Ul Listing, that is provided by the DAE application and which is defined by the service
provider.

Below is a description of where each type of XML Ul Listing comes from.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 331 (415)

DLNA RUIS IPTV Applications server

Remote Control

Device OITF’s built in Server Side XML
XML UI Listing Ul Listing

= OITF’s built in XML Ul Listing (blue arrow in above diagram):

0 This XML Ul Listing contains a set of URI pre-defined by the OITF corresponding to a number of
Control Uls that are available in the OITF device itself.

0 The OITF SHALL use this XML Ul Listing until a DAE application calls the
useServerSideXMLUIListing() method.

= Server Side XML Ul Listing (red arrows in above diagram):

0 This XML Ul Listing contains both the URIs which identify the control Uls located on the appropriate
IPTV Applications server through the pre-defined URI “/rcf/request_cui”.

Examples: /rcf/request_cui?url=www.cui-server.com/avcontrol _html¶ml=valuel..

The XML Ul Listing is retrieved (or created dynamically) by a DAE application, which then merges
the new XML Ul Listing with a current XML Ul Listing in the DLNA RUIS using the
useServerSideXMLUIListing() method. The merged XML Ul Listing will be located in the
DLNA RUIS.

The OITF SHALL associate all entries in the XML Ul Listing added by a DAE application with that
application, such that any HTTP requests from a Remote Control Device for the control Ul specified by
the XML Ul Listing entry SHALL be passed to the corresponding application.

All URIs provided in the XML Ul Listing SHALL start with the pre-defined URI
“/rcf/request_cui”, which can then be followed by some application-specific parameters. These
parameters can be used by the DAE application to identify the Control Ul being requested by the
Remote Control Device.

The format of the parameters in the URI is out of scope of the DAE specification.

0 When the DAE application is terminated, the OITF SHALL remove any XML Ul Listings previously
added by the application.

The following example shows the format of the Server Side XML Ul Listing. The <uri> element in the Server Side
XML Ul Listing SHALL start with the value “/rcf/request_cui”.

<?xml version="1.0" encoding="UTF-8"7?>
<uilist xmIns="urn:schemas-upnp-org:remoteui:uilist-1-0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'" xsi:schemaLocation=""urn:schemas-
upnp-org:remoteui:uilist-1-0 CompatibleUls.xsd">
<uil>
<uilD>4560-9876-1265-8758</ui ID>
<name>CoD Control Ul Type 1</name>
<description>Controlling the CoD contents</description>
<protocol shortName="CE-HTML-1.0"">
<uri>/rcf/request_cui?url=http://21.31.24.55:5910/codcuil</uri>
<protocol Info>
<relatedData xmlns="'urn:schemas-ce-org:ce-html-server-caps-1-0"
Xsi:schemalLocation="urn:schemas-ce-org:ce-html-server-caps-1-0
ServerProfiles.xsd">
<profilelist>
<ui_profile name="MD_UIPROF"/>
</profilelist>
</relatedData>
</protocol Info>
</protocol>
</ui>
<uil>
<uilD>2123-3679-3568-2121</ui ID>
<name>CoD Control Ul Type 2</name>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 332 (415)

<protocol shortName="CE-HTML-1.0">
<uri>/rcf/request_cui?url=http://21.31.24.55:5910/codcui2</uri>
<protocol Info>
<relatedData xmlIns="urn:schemas-ce-org:ce-html-server-caps-1-0">
<profilelist>
<ui_profile name="MD_UIPROF"/>
</profilelist>
</relatedData>
</protocol Info>
</protocol>
</ui>
</uilist>

Below is example source code showing how an application can merge a Server Side XML UI Listing that it has retrieved
with the OITF’s built-in XML Ul Listing.

var rcMgr;
var xmlhttp;

function initQ) {
}éMgr = document.getElementByld("'rcfmanager™);
retrieveXMLUIListingFromServer(*'/iptv_app/xml_location/request_xml?xml=31",
mergeXMLUIListing);

}

function retrieveXMLUIListingFromServer(url, callbackFunc) {
xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4) {
if(xmlhttp.status == 200){
callbackFunc(xmlhttp.responseText);
}

}

xmlhttp.open(""GET", url, true);
xmlhttp.send(null);

function mergeXMLUIListing(xmluilisting) {
rcMgr .useServerSideXMLUIListing(xmluilisting, false);

}
<body onload="init();">
<object id="rcfmanager" type="application/oipfRemoteControlFunction"/>

8.5.3 Retrieving the Control Ul
The process of retrieving a Control Ul based on an OITF’s built in XML Ul Listing is described below:
1. The Remote Control Device sends the request to the DLNA RUIS for the XML Ul Listing.

2. The Remote Control Device presents a Ul based on the information in the XML UI Listing. The user selects an
entry from the list.

3. The Remote Control Device sends the HTTP request containing the URI (which has been specified by the OITF
itself) to the DLNA RUIS. The OITF returns the Control Ul (from its internal memory).

4. The Remote Control Device presents the Control Ul. This Control Ul may be an application itself or may be a
list of other available applications. In the latter case, the user selects a link from the Control UI.

5. The Remote Control Device sends the HTTP request containing the URI from the selected link to the DLNA
RUIS. The OITF retrieves the DAE application from the IPTV Applications server and executes it.

6. The DAE application recognises that it needs to get the control Ul.
7. The DAE application retrieves the Control Ul from the IPTV Applications server.

8. The DAE application passes the Control Ul received from the IPTV Applications server to the Remote Control
Device.

The process of retrieving a Control Ul based on a Server Side XML Ul Listing is as below:
1. The Remote Control Device sends the request to the DLNA RUIS for the XML UI Listing.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 333 (415)

2. The Remote Control Device presents a Ul based on the information in the XML UI Listing. The user selects an
entry from the list.

3. The Remote Control Device sends the HTTP request containing the URI (which must start with
“/rcf/request_cui”) to the OITF DLNA RUIS. The OITF matches the URI with the correct DAE
application and passes the request to that DAE application as a ReceiveRemoteMessage event.

4. The DAE application translates the request which came from the Remote Control Device into a URI.
5. The DAE application retrieves the Control Ul from the IPTV Applications server using this URI.

6. The DAE application passes the Control Ul received from the IPTV Applications server to the Remote Control
Device using sendRemoteMessage ().

More details can be found in Annex J.

When the control Ul (CE-HTML document) is being rendered in the Remote Control Device, it can retrieve resources
(For example, image, css or JavaScript files) directly from the IPTV Applications server over a secure connection. For
deployments where the IPTV Applications server is outside the consumer network, the consumer network’s WAN
gateway SHALL allow the DLNA RUIC to access the IPTV Applications server to retrieve resources directly. The
Remote Control Device that connects to the IPTV Applications server SHALL implement the Secure Sockets Layer
(SSL) Protocol, the Transport Layer Security (TLS) and the “https:” URI scheme, in order to support secure Internet
transactions (as defined in section 9.1.1).

Below is example source code to show sending the control Ul to the Remote Control Device.

var rcMgr;

var xmlhttp;

var deviceHandle;

var regHandles = new Array();

function init(Q {

}éMgr = document.getElementByld("'rcfmanager™);
rcMgr .addEventListener ("'ReceiveRemoteMessage™, receiveRemoteMessageFromRD, false);

// check whether the DAE app is launched by the Remote Control Device or not
if (rcMgr.currentRemoteDeviceHandle = undefined) {
deviceHandle = rcMgr.currentRemoteDeviceHandle;
retrieveCUlFromServer("'/iptv_applications/cui_location/request_cui?cui=123",
sendCUIToRemoteDevice);

}

function retrieveCUlFromServer(url, callbackFunc){
xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4) {
if(xmlhttp.status == 200){
callbackFunc(xmlhttp.responseText);
¥

}

by
xmlhttp.open("'GET", url, true);
xmlhttp.setRequestHeader (""X-01TF-RCF-User-Agent",
rcMgr .getRemoteDeviceUserAgent(deviceHandle));
xmlhttp.send(null);

}

function sendCUIToRemoteDevice(cuiCEHTML) {
rcMgr . sendRemoteMessage(remoteDeviceHandle, regHandles.shift(), cuiCEHTML);

function receiveRemoteMessageFromRD(type, remoteDeviceHandle, reqHandle, requestLine,
headers, body) {
it (type == 0) {
deviceHandle = remoteDeviceHandle;
regHandles.push(regHandle) ;

// retrieve the CUlI CE-HTML document from the IPTV Applications server
retrieveCUlFromServer(*'/iptv_applications/cui_location/request_cui?cui=123",
sendCUIToRemoteDevice);

}

<body onload="init();">
<object id="rcfmanager" type="application/oipfRemoteControlFunction"/>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 334 (415)

8.5.4 Receiving and responding a message between the control Ul in
the Remote Control Device and OITF

Remote Control

Device DAE

Control Ul

This example shows the usage of receiving and responding to a message between the control Ul presented on the Remote
Control Device and the OITF. When the control Ul sends a message to the DAE application via an HTTP request, the
DAE application receives the message via a ReceiveRemoteMessage event. The DAE application SHALL return the
response to the control Ul in the Remote Control Device by using the sendRemoteMessage () or
sendInternalServerError() methods.

The OITF is not able to notify the Remote Control Device whether the DAE application has been terminated or
deactivated, or whether the application/oipfRemoteControlFunction object has been removed from the
application’s DOM tree. For this reason, the Remote Control Device may be presenting an outdated copy of the control
Ul and could send a request from this outdated control Ul. In this case, the OITF SHALL return a 500 response error
code to the Remote Control Device.

The OITF SHALL limit the number of HTTP requests (from the control Ul in the Remote Control Device) which have
not been responded to by the DAE application. If there are any requests over this limit, the OITF SHALL automatically
reject them and send an HTTP response (HTTP 500 - Internal Server Error) to the Remote Control Device. The OITF
SHALL buffer at least 10 outstanding HTTP requests.

NOTE: Annex J.2.3 provides a procedure related to this example.

Below is example source code showing the handling of messages between the DAE application and the control Ul that
controls the DAE application.

DAE application

var rcMgr;
var regHandles = new Array();

function init(Q) {

}éMgr = document.getElementByld("'rcfmanager');
rcMgr .addEventListener (*'ReceiveRemoteMessage’, getMessageFromRD, false);

}
function getMessageFromRD(type, remoteDeviceHandle, regHandle, requestLine, headers,
body) {
it (type == 1) {
// Handling the received message with parameters (requestLine, headers, body)
parseAndExecute(body) ;
// Sending the proper return message to the Remote Control Device
Var contentType = "Content-Type: text/plain\n"
rcMgr .sendRemoteMessage(remoteDeviceHandle, regHandle, contentType, "ok'™);
}
}

function parseAndExecute(body) {
//For example, the request from the RD contains the message related to
//"play of audio™ with JSON form (Ex: {"command®:415})
var retVal = eval("(""+body+'")");
if (retval.command == VK_PLAY) {
document.getElementByld("aidl'™) .play(1);

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 335 (415)

<body onload="init();">

<object id="rcfmanager" type="application/oipfRemoteControlFunction"/>

<object type="audio/mp4" id="aidl" data="http://www.avsource.com/audio/bgm.aac">
<param name="loop" value="infinite"/>

</object>

Control Ul
var xmlhttp;

function sendPlay() {
var msg = {"command” :415%};
sendMessage(*'/rcf/request_msg", msg, receiveMsg);

function sendMessage(url, msg, callbackFunc){
xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {
if (xmlhttp.readyState == 4) {
if(xmlhttp.status == 200){
callbackFunc(xmlhttp.responseText);
}

}

xmlhttp.open(""POST", url, true);
request.setRequestHeader ('Content-Type', "application/x-www-form-urlencoded");
xmlhttp.send(msg);

}

function receiveMsg(msg) {
alert("'Received message from the DAE application: " + msg);

3
<body>

;iﬁput type="button” value="Play" onclick="javascript:sendPlay();">

85.5 Notification to the Remote Control Device

The application/oipfRemoteControlFunction object supports generating 3™ party multicast notifications and
dispatching them to Remote Control Devices. The DAE application can make and send a notification to the Remote
Control Devices by using the sendMul ticastNotif() method.

If the DAE application wants to send a notification CE-HTML document to all of the Remote Devices, the DAE
application SHALL set the remoteDeviceHandle parameter in the sendMulticastNotif method to -1.

Otherwise, if the DAE application wants to allow only targeted Remote Device (currently being connected to the DAE
application) to retrieve the notification CE-HTML document, the DAE application set the proper
remoteDeviceHandle parameter in the sendMulticastNotiT method when it calls. Then, the OITF SHALL
generate the notification URI with devicehandle and daeid parameters.

If the DAE application wants to send a notification CE-HTML document without storing it in the OITF, the DAE
application executes the sendMul ticastNotif method with null value in the noti fFCEHTML parameter. The OITF
SHALL make the notification URI which contains a dynamic parameter with true value, otherwise false is set in the
dynamic parameter.

Below is a generated notification URI based on parameter information in the sendMulticastNotif method.

?SendToTargetedRD&devicehandle=<target device handle value>&daeid=<DAE App
ID>&dynamic=<true or false>

This URL is sent to the Remote Devices through the <ruiEventURL> element of the multicast notification event and
the Remote Devices send requests to the OITF with this URL upon receiving it. When the OITF receives the requests
from the Remote Devices, it SHALL return the notification CE-HTML document in case the handle of the Remote
Device which sends the request is the same with the parameter value “<target device handle value>" in the HTTP request
URL, otherwise the OITF SHALL return the HTTP 403 response.

Below is example source code to show that the only targeted Remote Device retrieves the notification CE-HTML
document.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 336 (415)

var rcMgr;

var xmlhttp;

var deviceHandle;

var regHandles = new Array();

function initQ) {

}éMgr = document.getElementByld("'rcfmanager');
rcMgr .addEventListener ("'ResultMuticastNotif", resultMuticastNotifFromRD, false);

}

function sendTargetedNotif() {
// A remoteDeviceHandle SHALL be set to -1 if the OITF wants to send the
// notification CE-HTML Ul to all of the Remote Devices
// A remoteDeviceHandle SHALL be set to a specific value of the device handle if
// the OITF wants to send the notification CE-HTML Ul to the targeted
// Remote Control Devices
var remoteDeviceHandle = rcMgr.currentRemoteDeviceHandle;
var eventlLevel = 0;
var notifCEHTML = “<html>..</html>"";
var friendlyName = "Important notification';
var profilelist = "<ui_profile name="MD_UIPROF*"/>";

rcMgr .sendMulticastNotif(remoteDeviceHandle , eventLevel, notifCEHTML,
friendlyName, profilelist);

}

function resultMuticastNotifFromRD(remoteDeviceHandle, reqgHandle, dynamic) {
if (dynamic !'= true) {
alert("'Notification is sent to the Remote Control Device well™);
} else {
//Retrieve a notifcation CE-HTML Ul from server

}
}

<body onload="init();">
<object id="rcfmanager" type="application/oipfRemoteControlFunction"/>

8.5.6 Handling Multiple DAE applications and Multiple Remote Control
Devices

The OITF SHALL dispatch requests from a Remote Control Device to the DAE application that it is currently
controlling. Only one Remote Control Device SHALL communicate with a DAE application at any time although this
could change over time as described below.

= Multiple Remote Devices SHALL not be mapped to a same DAE application at the same time. If a second
Remote Control Device attempts to send an HTTP request to a DAE application which is already mapped to a
different Remote Control Device, this request SHALL fail (the OITF sends an HTTP 500 response to the
Remote Control Device).

= One Remote Device SHALL not be mapped to multiple DAE applications at the same time. If a Remote Device
is currently connected to a DAE application and then attempts to make a request to another DAE application,
this request SHALL fail (the OITF sends an HTTP 500 response to the Remote Device).

The OITF SHALL support three mechanisms to drop the connection between a Remote Control Device and a DAE
application as follows:

= The Remote Control Device currently bound to the DAE application sends a pre-defined URL
“/rcf/drop_connection”.

= The DAE application drops the connection with the Remote Control Device by using the dropConnection()
method.

= The OITF provide a timer mechanism to drop the connection with the Remote Control Device after a period of
inactivity (i.e. no HTTP requests received and no HTTP responses sent). The value of the inactivity timer expiry
is terminal specific. One timer will be assigned per Remote Control Device.

If the OITF is unable to dispatch requests to that application (e.g. because the application has terminated or because the
application/oipfRemoteControlFunction object has been destroyed), the request SHALL fail (the OITF sends
an HTTP 500 response to the Remote Control Device). If the OITF is notified that the Remote Control Device is no

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 337 (415)

longer connected to the network, then the OITF SHALL allow other Remote Control Devices to connect to the
application and assume control.

Below is example showing a mapping relationship between Remote Control Devices and DAE applications.

= Remote Control Device 1 is mapped to DAE application A. The Remote Control Device sends a request to drop
the connection with A, using the pre-defined URL “/rcf/drop_connection” and then makes a request to
DAE application B. DAE application B responds to the Remote Control Device. The OITF updates its internal
state to show that Remote Control Device 1 is now mapped to DAE application B.

[DAE app (A)] [DAE app (B)] Device handle DAE app handle
A -y
/EChanged .- 1 A
Remote Control 1 B
Device (1)

= Remote Control Device 2 is mapped to DAE application C. A second Remote Control Device 3 then makes a
request to DAE application C. The OITF sends an HTTP 500 response to the Remote Control Device 3.

[DAE app (C)]

‘ Device handle DAE app handle
® ; :

[Remote Device (2)] [Remote Device (3)]

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 338 (415)

9 Capabilities
9.1 Minimum DAE capability requirements

This section defines minimum capabilities which OITF implementations are required to provide to the Declarative
Application Environment and the applications running in that environment.

The following section defines minimum capabilities which SHALL apply to all OITFs.
OITFs MAY support multiple simultaneous applications loaded and running in the browser.

When the CEA-2014 notification framework (see section 5.3.1) is supported, OITFs SHALL support at least 2 DAE
applications being visible at one time, one application showing a notification in the notification window (as defined in
section 5.6.3 of CEA-2014-A) and one in the main browser area. OITFs MAY support more than one DAE application
being visible at one time in the main browser area. On OITFs where only one DAE application is visible at one time in
the main browser area, it is OITF implementation specific how the visible application is changed.

OITFs with an HD output SHALL support 1280x720 graphics on that output when HD video is being decoded or when
no video is being decoded. OITFs MAY support 1920x1080 graphics.

The present document does not define any requirements concerning support for SD graphics.

OITFs SHALL support unrestricted scaling of IP delivered video.

The present document does not define any requirements for scaling of video not delivered via IP, e.g. in hybrid OITFs.
The present document does not define requirements for supporting decoder format conversion.

The present document does not define requirements for pixel depth in the graphics system except that OITFs SHALL
support at least one bit of per-pixel alpha.

The present document does not require the capability to mix audio from memory and audio from a currently decoded
stream.

OITFs SHALL support decoding one stream containing video and audio. They MAY support decoding more than one
stream.

The OITF SHALL support widgets that are least of 100k bytes. Widgets of larger size are allowed but the specification
remains silent as to the maximum allowed size. When installing a widget with method instal IWidget() an error
message WIDGET_ERROR_SI1ZE_EXCEEDED is returned if the size is exceeded. OITFs SHALL support the “Tiresias
Screenfont” font or equivalent with the “Generic Application Western European Character Set” as defined in Annex C of
[TS 102 809]. They MAY support other fonts in addition.

OITFs SHALL provide some means for text input. The present document does not specify any particular solution.

The present document recommends support for pointer based input. The present document does not define requirements
for minimum memory sizes for DAE applications or OITF behaviour when available memory is low. This specification
is deliberately silent about the conditions under which the LowMemory event defined in section 7.2.1.4 is generated.

OITFs SHALL follow [RFC6265] when implementing cookies support.

Since section 6.1 of [RFC6265] does not fix strict limits, this specification fix the following minimum capabilities that
terminals SHALL support:

= At least 4096 bytes per cookie (as measured by the sum of the length of the cookie's name, value, and
attributes).

= At least 20 cookies per domain
= At least 100 cookies total
= Atleast 5120 bytes for the “Set-Cookie” header

NOTE: as implied by [RFC6265], if a cookie or a "Set-Cookie" header is bigger than the maximum size supported by the
terminal, it will be discarded, not truncated.

The present document does not require control of audio volume to be exposed to the DAE.
The OITF SHALL include a mechanism for the end user to generate the following key events:

= VK O -VK 9

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 339 (415)

= VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT, VK_ENTER, VK_BACK
= VK_RED, VK_GREEN, VK_YELLOW, VK_BLUE

An OITF SHALL support the entry of at least a complete set of characters in the range of characters [A-Z], or [a-z] (or
both), plus the characters [0-9], plus the characters: space (), period (.), comma (,) question-mark (?), exclamation-mark
(), at (@), colon (:), semi-colon(;), left-bracket ((), right-bracket()), slash(/), minus-sign (-), plus sign (+) and underscore
(), for the textarea element and the input element (taking account of the restrictions defined for the different types of that
element).

An OITF may also supported a pointer-based interaction paradigm. Terminals that support a free moving cursor SHALL
indicate this using the via the “+POINTER” Ul Profile Name Fragment as specified in section 9.2 and hence SHALL
include <pointer>true</pointer> in their XML capabilities.

To provide a good user experience with the widest range of user input devices, DAE applications SHOULD make the
same feature, function or link accessible via physical keys on the remote also accessible through an element in their user
interface which can be navigated to i) by up, down, left and right (e.g. on a remote control with a very restricted number
of buttons) and ii) by a pointer device controlling a free moving cursor on the screen.

If the OITF includes a mechanism to generate the following key events then they SHALL be available to DAE
applications and SHALL be indicated as part of the capability mechanism defined in section 9 of this specification:

= VK_PLAY, VK_PAUSE, VK_STOP, VK_NEXT, VK_PREV
» VK_PLAY_PAUSE

» VK _FAST_FWD

» VK_REWIND

NOTE: Some remote controls have separate “play” and “pause” keys; others have a single “play/pause” toggle key. For
that reason, in general, it is recommended that applications are written to handle both the VK_PLAY/VK_PAUSE key
codes and the VK_PLAY_PAUSE key code.

The OITF MAY include mechanisms to generate the following key events and if it does, making them available to DAE
applications is OPTIONAL:

= VK_HOME
= VK_MENU
= VK_GUIDE

» VK_TELETEXT
» VK_SUBTITLE

» VK_CHANNEL_UP

» VK_CHANNEL_DOWN
» VK_VOLUME_UP

= VK_VOLUME_DOWN
= VK_MUTE

Where OITFs make other remote control key events available to DAE applications, this SHALL be done as specified by
the capability mechanism defined in section 9 of this specification. Whenever applicable, this SHOULD be done using
the complementary Ul profiles defined in section 9.2.

9.1.1 SSL/TTLS Requirements

9.1.1.1 SSL/TLS Support

HTTP over TLS as defined in RFC 2818 [RFC2818] and RFC 5246 [RFC5246] SHALL be supported for transporting
application files over broadband.

TLS 1.2 ([RFC5246]) SHOULD be supported for HTTP over TLS, if not then TLS 1.1 ([RFC4346]) SHOULD be
supported instead and if neither of those is supported then TLS 1.0 ([RFC2246]) SHALL be supported instead.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 340 (415)

NOTE: TLS 1.2 provides a much higher security level than TLS 1.0 and 1.1 so manufacturer are recommended to
support it. Note also that TLS 1.0 and 1.1 are obsoleted by the TLS 1.2 specification. It is expected that future versions of
the present document will require support for TLS 1.2 and omit the possibility of only supporting TLS 1.0 or 1.1.

In order to fix a known vulnerability in SSL and TLS renegotiation, an OITF SHALL support the Renegotiation
Indication Extension as specified in [RFC5746] for all TLS versions.

An OITF SHALL deem a TLS connection to have failed if any of the following conditions apply:
= Certificate chain fails validation as per RFC 5280 [RFC5280] section 6.

= The host name or IP address contained in the server certificate does not match the host name or IP address
requested. When verifying the host name against the server-supplied certificate, the “** wildcard and the
subjectAltName extension of type dNSName shall be supported as defined in RFC 2818 [RFC2818].

An OITF SHALL not provide the user with an option to bypass these conditions.

9.1.1.2 Cipher Suites
An OITF SHALL support the following cypher suites for all TLS versions:
= TLS_RSA_WITH_3DES_EDE_CBC_SHA
= TLS_RSA_WITH_AES 128 CBC_SHA
= TLS_RSA_WITH_AES 256 CBC_SHA
= TLS _DHE_DSS WITH_3DES EDE_CBC_SHA
An OITF SHALL NOT support “anonymous’ cipher suites for TLS connections.

9.1.1.3 Root Certificates

A list of root certificates is maintained at http://www.oipf.tv/root-certificates. The policy by which this list has been
derived is outlined in Annex N.

An OITF SHALL trust all root certificates identified as mandatory and MAY support those certificates identified as
optional on that list, subject to the conditions in this section.

An OITF SHOULD not trust any other root certificates.

Note: Including root certificates that are not on the list increases the risk of a man in the middle attack if those root
certificates have not been audited to a similar or greater level than those on the list.

An OITF SHALL cease to trust any root certificates with RSA keys of less than 2048 bits after 31st December 2013.

An OITF SHALL support a means by which the device manufacturer can remove or distrust root certificates after
manufacture. This MAY be handled either via a firmware upgrade mechanism or preferably via a specific root certificate
update mechanism that could allow more timely updates.

A manufacturer MAY choose to remove or distrust a mandatory root certificate in the OITF in response to a security
threat.

An OITF SHOULD support a means of securely adding new root certificates after manufacture in order to maintain
interoperability with servers over time.

9.2 Default Ul profiles

The OITF SHALL support at least one of the Ul-related base profiles defined in Table 15.
Table 15: Base Ul Profile Names

Base Ul Profile Name Default values
"OITF_SDEU_UIPROF" <width>720</width>
<height>576</height>
<colors>high</colors>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 341 (415)

<hscroll>false</hscroll>
<vscroll>true</vscroll>

Tiresias with
support for the Unicode character range “Generic Application
Western European Character set” as defined in Annex C of [TS 102
809].

<key>VK_BACK</key>
<colorkeys>true</colorkeys>
<navigationkeys>true</navigationkeys>
<numerickeys>true</numerickeys>
<pointer>false</pointer>

<security protocolNames="ssl tls">true</security>

<overlay>per-pixel</overlay><!-- whereby at least one level of
partial transparency between graphics and video must be supported
as per the minimum requirements of section 9.1 -->

<overlaylocal>per-pixel</overlaylocal><!-- whereby at least one
level of partial transparency between graphics and video must be
supported as per the minimum requirements of section 9.1 -->

<overlaylocaltuner>per-pixel</overlaylocaltuner><!-- whereby at
least one level of partial transparency between graphics and video
must be supported as per the minimum requirements of section 9.1
-->

<overlaylPbroadcast>per-pixel</overlaylPbroadcast><!-- whereby
at least one level of partial transparency between graphics and
video must be supported as per the minimum requirements of
section 9.1 -->

<notificationscripts>false</notificationscripts>
<save-restore>false</save-restore>

"OITF_SD60_UIPROF"

Same as OITF_SDEU_UIPROF, with the following modifications:

<width>720</width>
<height>480</height>

"OITF_SDUS_UIPROF"

Same as OITF_SDEU_UIPROF, with the following modifications:

<width>640</width>
<height>480</height>

"OITF_HD_UIPROF"

Same as OITF_SDEU_UIPROF, with the following modifications:

<width>1280</width>

<height>720</height>

<colors>high</colors>

Tiresias Screenfont
with support for the Unicode character range “Generic Application
Western European Character Set” as defined in Annex C of [TS 102
809].

"OITF_FULL_HD_UIPROF"

Same as OITF_HD_UIPROF, with the following modifications:

<width>1920</width>
<height>1080</height>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 342 (415)

In order to capture the heterogeneity of the features supported by OITF devices, this specification also defines a set of
complementary Ul Profile name fragments, each constituting a particular logical subset of capabilities, for which a OITF
can indicate support by appending the Ul Profile name fragment to the name of the supported base Ul profile as defined
in Table 16. Both the OITF and server SHALL support the concatenation of a series of Ul profile name fragments in any
order.

Table 16: Complementary Ul Profile Name Fragments

Ul Profile Name Fragment Default values

"+TRICKMODE™ <key>VK_PLAY</key><key>VK_PAUSE</key> and/or

<key>VK_PLAY_PAUSE</key> (*)
<key>VK_STOP</key>
<key>VK_REWIND</key>
<key>VK_FAST_FWD</key>

(*) The +TRICKMODE profile fragment identifier does not distinguish
between remote controls having separate “play” and “pause” keys; and
remote controls having a single “play/pause” toggle key. For that
reason, in general, it is recommended that applications are written to
handle both the VK_PLAY/VK_PAUSE key codes and the
VK_PLAY_PAUSE key code

"+AVCAD" <video_profile

type="application/vnd.oipf.ContentAccessStreaming+xml"/>

T+bLe <download protocolNames="http">true</download>

“+IPTV_SDS™ <video_broadcast type="ID_IPTV_SDS"

scaling="arbitrary">true</video_broadcast>

THIPTV_URIT® <video_broadcast type="ID_IPTV_URI"

scaling="arbitrary">true</video_broadcast>

THANAT <video_broadcast type="ID_ANALOG"

scaling="quarterscreen">true</video_broadcast>

"+bvB_C* <video_broadcast type="ID_DVB_C ID_DVB_SI_DIRECT"

scaling="quarterscreen">true</video_broadcast>

"+DVB_T" <video_broadcast type="ID_DVB_T ID_DVB_SI_DIRECT"

scaling="quarterscreen">true</video_broadcast>

"+DvB_s" <video_broadcast type="ID_DVB_S ID_DVB_SI_DIRECT"

scaling="quarterscreen">true</video_broadcast>

"+DVB_C2" <video_broadcast type="ID_DVB_C2 ID_DVB_SI_DIRECT"

scaling="quarterscreen">true</video_broadcast>

"+DVB_T2" <video_broadcast type="ID_DVB_T2 ID_DVB_SI_DIRECT"

scaling="quarterscreen">true</video_broadcast>

"+DVB_S2" <video_broadcast type="ID_DVB_S2 ID_DVB_SI|_DIRECT"

scaling="quarterscreen">true</video_broadcast>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 343 (415)

"+1SDB_C" <video_broadcast type="ID_ISDB_C"
scaling="quarterscreen">true</video_broadcast>
"+1SDB_T" <video_broadcast type="ID_ISDB_T"
scaling="quarterscreen">true</video_broadcast>
"+1SDB_S" <video_broadcast type="ID_ISDB_S"
scaling="quarterscreen">true</video_broadcast>
"+META_BCG™ <clientMetadata type="bcg">true</clientMetadata>
THMETA_EIT” <clientMetadata type="eit-pf">true</clientMetadata>
THMETA_ST” <clientMetadata type="dvb-si">true</clientMetadata>
THITV_KEYS™ <key>VK_HOME</key>
<key>VK_ MENU</key>
<key>VK_CANCEL</key>
<key>VK_SUBTITLE</key>
"+CONTROLLED™ <key>VK_CHANNEL_UP</key>
<key>VK_CHANNEL_DOWN</key>
<key>VK_VOLUME_UP</key>
<key>VK_VOLUME_DOWN</key>
<key>VK_MUTE</key>
<configurationChanges>true</configurationChanges>
<extendedAVControl>true</extendedAVControl>
When relevant (i.e. when coupled with +DL, resp +PVR):
<download manageDownloads="sameDomain">true</download>
<recording manageRecordings="sameDomain">true</recording>
<remote_diagnostics>true</remote_diagnostics>
"+PVR™ <key>VK_RECORD</key>
<recording>true</recording>
""+DRM™ <drm DRMSystemID="urn:dvb:casystemid:19188">TS_BBTS
TTS_BBTS MP4_PDCF</drm>
“+CommunicationServices” <communicationServices>true</communicationServices>
“+SVG”’ <mime-extensions>image/svg+xml</mime-extensions>
“+POINTER” <pointer>true</pointer>
“+POLLNOTIF” <pollingNotifications>true</pollingNotifications>
“+WIDGETS” <widgets>true</widgets>
“+HTMLS_MEDIA” <html5_media>true</html5_media>
“+RCF” <remoteControlFunction>true</remoteControlFunction>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 344 (415)

(*) If an OITF supports the DLNA RUI RCF as defined in section 7.17,
the 3rd party multicast notification mechanism as defined in section
5.6.1 of [CEA-2014-A] SHALL be supported for the OITF to send the
3rd party multicast notification to the DLNA RUICs.

“+TELEPHONY™ <telephony_services video="false">true</telephony_services>

“+VIDEOTELEPHONY” <telephony_services video="true">true</telephony_services>

Whenever an OITF supports an extension to the capabilities that can be defined using a combination of a base Ul Profiles
and a (number of) Ul Profile fragment(s), it SHALL advertise this extension using the mechanism as defined in section
8.1.

9.3 Client capability description

This section defines an XML format by which an OITF describes its capabilities to a DAE application. This XML format
was originally based on that found in CEA-2014 [CEA-2014-A] however it has been extensively extended in this
document. This is used to describe the capabilities that form the basis for the profile definitions and profile fragments as
defined in section 9.2, and is also the format that is used by the xmICapabi l i ties property of the
application/oipfCapabilities object.

The schema with the extensions and modifications to the capability description as defined in this section can be found in
Annex F. The schema in Annex F SHALL be used instead of the existing capability description schema as defined in
Annex C of CEA-2014 [CEA-2014-A]. Support for carrying the XML capability description through the User-agent
header as defined in CEA-2014 is not included in this document.

The elements and attributes not defined in this document SHALL be inherited from CEA-2014 [CEA-2014-A].
Examples of valid OITF capability profiles are (using the full XML syntax as defined in Annex F):

A pure HD-capable IPTV OITF, which supports live DVB-IP TV via SD&S, streamed mpeg at SD and HD formats, the
MPAA parental rating scheme, trickplay, and access to an embedded BCG metadata client:

<profilelist>
<ui_profile
name="01TF_HD_UIPROF+IPTV_SDS+AVCAD+META_ BCG+TRICKMODE+ITV_KEYS+CONTROLLED+DRM"*>

<ext>
<parentalcontrol schemes="urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001"> true
</parentalcontrol>
</ext>
</ui_profile>

<video_profile name="TS_AVC_SD_25 HEAAC" type="video/mpeg"
transport="http-get rtsp-rtp-udp"
DRMSystemID=""urn:dvb:casystemid:19188"/>

<video_profile name="TS_AVC HD_25 HEAAC" type="video/mpeg"
transport="http-get rtsp-rtp-udp"
DRMSystemID=""urn:dvb:casystemid:19188"/>
</profilelist>

A hybrid HD-capable box, supporting live DVB broadcasts over satellite, PVR functionality, and (Marlin-protected and
unprotected) VoD in progressive download:

<profilelist>
<ui_profile
name=""01TF_HD_UIPROF+AVCAD+TRICKMODE+ITV_KEYS+CONTROLLED+DRM+DVB_S+META_SI1+PVR"">
</ui_profile>

<video_profile name="TS_AVC_SD 25 HEAAC" type="video/mpeg"
transport="http-get rtsp-rtp-udp"
DRMSystemID=""urn:dvb:casystemid:19188"/>

<video_profile name="TS_AVC_HD_ 25 HEAAC" type="video/mpeg"
transport="http-get rtsp-rtp-udp"
DRMSystemID=""urn:dvb:casystemid:19188"/>
</profilelist>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 345 (415)

A hybrid device providing access to its ATSC terrestrial tuner (supporting two different parental rating schemes), DVB-
IPTV ‘tuner’, and PVR functionality to DAE applications, but not exposing ‘trickmode’ or ‘controlled’ key events to
DAE applications running in the browser:

9.3.1

<profilelist>
<ui_profile name="OITF_HD_UIPROF+PVR+IPTV_SDS">
<ext>
<video_broadcast type="ID_ATSC_T" scaling="arbitrary'>true</video_broadcast>

<parentalcontrol schemes="urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001
urn:mpeg:mpeg7:cs:MPAAParentalRatingTVCS:2001">
true </parentalcontrol>
</ext>
</ui_profile>
</profilelist>

Tuner/broadcast capability indication

If an OITF supports control over its local tuner functionality by a server, an OITF SHALL indicate this through the base
profile and Ul profile name fragment strings as defined in section 9.2 “Default Ul profiles” and the schema defined in
Annex F. To this end the following new elements SHALL be supported for a capability description or capability profile
(see Annex F for more information):

<video_broadcast> - indicates whether or not the OITF supports the video/broadcast object to enable control of its local
tuner functionality by a server (i.e. retrieving the tuner’s channel line up, switching channels of the tuner, and rendering
the output of the broadcasted content inside the browser). The <video_broadcast> element has the following attributes:

Attribute type specifies the type(s) of tuner(s) for which the OITF allows tuner control, by using a space-
separated list of idType values as specified in section 7.13.11.1 for the Channel object (i.e. “1D_ANALOG”,
“ID_DVB_C”, etc.).

Attribute transport specifies a space-separated list of supported (transport) protocols in case of IP Broadcasts
(i.e. if the type attribute contains one of the I1D_IPTV_* idType values as specified in section 7.13.11.1). This is
done by using one or more of the (transport) protocol names as defined in Annex F of [OIPF_PROT2].

Attribute scaling specifies the method of video scaling the OITF supports for the tuner output (i.e. “arbitrary”,
“quartersize”, “0.33x0.33” or “none”), with default value “arbitrary” if omitted.

Attribute minSize specifies the minimal size, as a percentage of the full extent of the OITF’s display, to which
the OITF supports scaling of video content received over the (logical or physical) tuner if attribute scaling has
value “arbitrary”. The value “0” for the minSize attribute indicates support for arbitrary and unrestricted scaling
of the video. The value of the attribute minSize SHALL be silently ignored if the value of the attribute scaling is
not “arbitrary”.

Attribute nrstreams provides an indication of the number of video streams that can be rendered simultaneously
by the indicated tuner functionality (typically limited by the number of tuners supported by the device), with a
default value of “1” if omitted.

Attribute postList specifies, if included in the client’s capability description, whether or not the OITF supports
the HTTP POST method defined in section 4.8.1.2. If included in the server’s capability description, postList
specifies whether or not the server supports using the channel list information sent through the HTTP POST
method to exercise tuner control. If an OITF does not post the channel list information, a server SHALL,
irrespective of the value it specified for the postList attribute in its server capability description, rely on the
getChannelConfig method defined in section 7.13.1.3 to access the channel list information.

Attribute localTimeshift indicates whether or not the OITF supports timeshift of scheduled content using local
storage.

Attribute networkTimeshift indicates whether or not the OITF supports network timeshift of scheduled content.
Different from PVR or local timeshift capability in that no local resources are required to support network
timeshift

The <video_broadcast> element is defined using the following XML Schema fragment. Multiple
<video_broadcast> elements may be specified to distinguish between tuners with different behaviour or
capabilities, for example with respect to scaling:

<xs:element name="video_broadcast" type="videoBroadcastType'" minOccurs="0"
maxOccurs="unbounded"/>
<xs:complexType name="videoBroadcastType'>
<xs:attribute name="type" type="xs:string" use="required'/>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 346 (415)

<xs:attribute name="transport" type=''xs:string"/>
<xs:attribute name="nrstreams" type=''xs:unsignedint" default="1"/>
<xs:attribute name="scaling" type="'scalingType" default="arbitrary"/>
<xs:attribute name="minSize" type="'xs:unsignedInt" default="0"/>
<xs:attribute name="postList" type="xs:boolean" default="false"/>
<xs:attribute name="networkTimeshift" type="xs:boolean" default="false"/>
<xs:attribute name="localTimeshift" type="xs:boolean" default="false'/>
</xs:complexType>

= <overlaylocaltuner> - indicates whether or not the OITF supports overlays for video broadcasts received
through the local tuner, i.e. allows XHTML content to be rendered on top of video content broadcasted over
local tuner. If included, the value of this element SHALL be per-pixel as defined for the element <overlay>.
Note: the values none, on-off and global defined for the <overlay> element in [Req. 5.2.1.a] of CEA-2014-A are
not permitted for this element in this specification.

9.3.2 Broadcast content over IP capability indication

If an OITF supports functionality for rendering the output of the broadcasted content received over IP inside the browser
and optionally providing an IPTV related channel line-up and favourite list to the server, an OITF SHALL indicate this
through the base profile and Ul profile name fragment strings as defined in section 9.2 “Default Ul profiles” and the
schema defined in Annex F. This SHALL be done using the same <video_broadcast> element as defined in section 9.3.1,
whereby the type attribute contains one of the ID_IPTV_* idType values as specified in section 7.13.11.1:

= <video_broadcast> - indicates whether or not the OITF supports the video/broadcast object to enable control
rendering the output of the broadcasted content received over IP inside the browser and optionally providing an
IPTV related channel line-up and favourite list to the server.

To indicate support for overlays over IP broadcasts the following element SHALL be used (see Annex F for more
information):

= <overlaylPbroadcast> - indicates whether or not the OITF supports overlays for IP video broadcasts, i.e.
allows XHTML content to be rendered on top of video content broadcasted over IP. If included, the value of this
element SHALL be per-pixel as defined for the element <overlay>. Note: the values none, on-off and global
defined for the <overlay> element in [Req. 5.2.1.a] of CEA-2014-A are not permitted for this element in this
specification.

9.3.3 PVR capability indication

Support for the control of recording functionality that is available to the OITF by a server SHALL be indicated through
the base profile and Ul profile name fragment strings as defined in section 9.2 “Default Ul profiles” and the <recording>
element defined in Annex F. This specification defines the following element that can be added to a capability
description:

<recording>: indicates whether or not the OITF supports control of its local recording (i.e. PVR) functionality by a
server. If included, the value of this element SHALL be (true|false). The boolean attribute ipBroadcast specifies whether
or not the OITF also supports recording of A/V content broadcasted over IP (using the mechanisms for Scheduled
Content defined in [OIPF_PROT?2]), the boolean attribute HAS specifies whether or not the OITF also supports recording
of scheduled content delivered over IP as defined by HAS [OIPF_HASZ2], the boolean attribute DASH specifies whether
or not the OITF also supports recording of scheduled content delivered over IP as defined by [DASH] and [OIPF_HAS2]
and the Boolean attribute postList specifies whether or not the OITF supports the HTTP POST method defined in section
4.8.2, respectively whether or not the server uses the posted channel list information, if conveyed by the OITF, to control
the recording functionality available to the OITF. If an OITF does not post the channel list information, a server SHALL,
irrespective of the value it specified for the postList attribute, rely on the getChannellConfig() method defined in
section 7.13.1.3 to access the channel list information. The Boolean attribute manageRecordings specifies whether or not
the OITF supports managing recordings through the JavaScript APIs defined in section 7.10.4.

The <recording> element is defined using the following XML Schema fragment (see Annex F for more information):

<xs:element name="recording" type="pvrType"/>
<xs:complexType name="pvrType'>
<xs:simpleContent>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 347 (415)

<xs:extension base="xs:boolean'>
<xs:attribute name="ipBroadcast" type=''xs:boolean'" default="false"/>
<xs:attribute name="HAS" type="'xs:boolean" default="false'/>
<xs:attribute name="DASH" type='"xs:boolean" default="false"/>
<xs:attribute name="manageRecordings"
type=""manageRecordingsType"
default="none"/>
<xs:attribute name="postList" type="xs:boolean" default="false"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="manageRecordingsType''>
<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="iInitiator"/>
<xs:enumeration value="'samedomain'/>
<xs:enumeration value="all"/>
</xs:restriction>
</xs:simpleType>

If the manageRecordings attribute is present, this attribute SHALL take one of the following values:
= “none”: indicates that the client does not support managing recordings.
= “initiator”: indicates that recordings initiated by the current application may be managed.

= “samedomain”: indicates that recordings initiated by applications from the same fully-qualified domain may be
managed.

= “all”: indicates that recordings initiated both by the current application and other applications may be managed.

If not present, a value of “none” SHALL be assumed.

9.34 Download CoD capability indication

If a client supports downloading content to a client (with or without DRM protection), the client SHALL indicate this
through the base profile and Ul profile name fragment strings as defined in section 9.2 “Default Ul profiles” and the
schema defined in Annex F. The <download> element SHALL adhere to the definition of bullet 0) of [Req. 5.2.1.a] of
CEA-2014-A.

A client MAY include an informative list of MIME types it supports for playback after download through the <mime-
extensions> element. Note that since content download may be separated from content playback, a server SHOULD
NOT rely on this information to be present.

If a client supports managing downloads through the JavaScript content download API specified in section 7.4.3 then the
client SHALL indicate this using the attribute manageDownloads. This attribute has the following definition (see Annex
F for more information):

<xs:attribute name="manageDownloads" type="manageDownloadsType" default="none'/>

If present, this attribute SHALL take one of the following values:
= “none”: indicates that the client does not support managing downloads.
= “initiator”: indicates that downloads initiated by the current application may be managed.

= “samedomain”: indicates that downloads initiated by applications from the same fully-qualified domain may be
managed.

= “all”: indicates that downloads initiated both by the current application and other applications may be managed.
If not present, a value of “none” SHALL be assumed.

Example:

<download protocolNames="http ftp" manageDownloads="all'> true </download>

9.35 Parental ratings

If an OITF supports a parental control system, the OITF SHALL indicate this by using the value “true” for element
<parentalcontrol> in the OITF capability profile/description, and define a space separated list of names of parental rating
schemes using the “schemes” attribute.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 348 (415)

The schema of the <parentalcontrol> element is defined as follows (see Annex F for more information):

<xs:element name="parentalcontrol’ type="parentalControlType"/>
<xs:complexType name="parentalControlType'>
<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute name="'schemes" type="'xs:string'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

For which the following semantics SHALL apply:

<parentalcontrol> - indicates whether or not the OITF supports a client controlled parental control system. If included
in the OITF capability description, the value of this element SHALL be: (true|false). The <parentalcontrol> element has
the following attributes:

= attribute “schemes”: SHALL be a non-empty space separated list of names of parental rating schemes registered
with the platform (either by the manufacturer, or by applications where the rating scheme is associated with a
recording), if the value of the <parentalcontrol> element is true. Valid rating schemes names include the
ParentalRating classification scheme names as defined by property “scheme” of the ParentalRating object
as defined in section 7.9.4.

Example:

<parentalcontrol schemes="dvb-si urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001">
true
</parentalcontrol>

9.3.6 Extended A/V API support

The OITF SHALL indicate support for the extended A/V control APIs defined in section 7.13.9 through the base profile
and Ul profile name fragment strings as defined in section 9.2 “Default Ul profiles” and the <extendedAVControl>
element defined in Annex F:

<xs:element name="extendedAVControl" type="xs:boolean'/>

If included, the value of this element SHALL be: (true]false)

NOTE: Section 7.13.9 defines which methods and properties in that section are covered by this capability and which are
not.

9.3.7 OITF Metadata API support

The OITF SHALL indicate support for client-side metadata processing and the APIs defined in section 7.12 through the
base profile and Ul profile name fragment strings as defined in section 9.2 “Default Ul profiles” and the
<clientMetadata> element defined in Annex F:

<xs:element name="'clientMetadata" type="metadataType'/>
<xs:complexType name="metadataType''>
<xs:simpleContent>
<xs:extension base="xs:boolean'>
<xs:attribute name="type" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

This element has the following semantics:

<clientMetadata> - indicates whether or not the OITF supports a client-side metadata processing. If included in the RUI
Client capability description, the value of this element SHALL be: (truelfalse).

The <clientMetadata> element has the following attributes:

= attribute “type” SHALL include a non-empty space separated list of names of supported metadata
systems/protocols, if the value of the <clientMetadata> element is true.

Below is an extensible list of metadata system/protocol names which MAY be used for this attribute. These
values are not case sensitive:

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 349 (415)

e “bcg”: indicates support for the TV-Anytime Broadband Content Guide metadata format according to
section 3.3 of [OIPF_METAZ].

e “sd-s”: indicates support for the DVB Service Discovery and Selection format according to section 3.2 of
[OIPF_METAZ].

o “dvb-si”: indicates support for DVB-SI EIT schedule information as defined by [EN 300 468].

o “eit-pf”: indicates support for EIT present/following information as defined for DVB-SI in section 4.1.3
of [OIPF_METAZ2]

9.3.8 OITF Configuration API support

The OITF SHALL indicate support for modification of OITF configuration and settings by applications (via the APIs
defined in section 7.2.8) through the base profile and Ul profile name fragment strings as defined in section 9.2 “Default
Ul profiles” and the <configurationChanges> element defined in Annex F:

<xs:element name="configurationChanges" type=''xs:boolean'/>

If included, the value of this element SHALL be: (true|false).

9.3.9 Communication Services APl Support

The OITF SHALL indicate support for the Communication Services API (via the APIs defined in section 7.8) through
the base profile and Ul profile name fragment strings as defined in section 9.2 “Default Ul profiles” and the
<communicationServices> element defined in Annex F:

<xs:element name="'communicationServices" type="xs:boolean'/>

<xs:element name="'presenceMessaging" type="'xs:boolean'/>

If included, the value of these elements SHALL be: (true|false).

Support for full-duplex Voice and Video Telephony APIs is indicated using:

<xs:element name=""telephony_services" type="telephonyServicesType'/>
<xs:complexType name="telephonyServicesType">
<xs:simpleContent>
<xs:extension base="xs:boolean'>
<xs:attribute name="video" type='xs:boolean" default="false'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

If present, the video attribute SHALL take one of the following values (true|false).
If not present, a value of “false” SHALL be assumed.

Example:

<telephony_services video=""true'"> true </telephony_services>

9.3.10 DRM capability indication

The OITF SHALL indicate support for handling DRM-protected content through the base profile and Ul profile name
fragment strings as defined in section 9.2 “Default Ul profiles” and the <drm> element defined in Annex F:

<xs:element name="drm" type="drmType'" minOccurs="0" maxOccurs="unbounded"/>
<xs:complexType name="drmType'>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="DRMSystemlID" type=''xs:string" use="required"/>
<xs:attribute name="protectionGateways"' type="'xs:string" default=""/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

And with the following semantics:

<drm> - indicates whether or not the client supports a DRM content protection system for downloading and streaming
content. If included in the RUI Client capability description, the value of this element SHALL be a space separated list of

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 350 (415)

zero or more names of supported file and/or container formats for protected content by the DRM system indicated by the
"DRMSystemID" attribute, such as the OMA DRM Content Format (DCF). Valid values include: a system layer format
name of the first column of Table 3 of [OIPF_MEDIAZ2], and a protection format of the second column of Table 3 of
[OIPF_MEDIAZ2], concatenated with an underscore *_’. In case of the Gateway centric approach defined by
[OIPF_CSP2], this value indicates the system layer and protection formats which are supported by the combination of
OITF and CSP Gateway. Values are not case sensitive.

The <drm> element has the following attributes:

- attribute “DRMSystemID”” SHALL include a supported DRM system. Valid values for the "DRMSystemID" include
the values as defined by element DRMSystemID in Table 9 of section 3.3.2 of [OIPF_METAZ2]. For example, for Marlin,
the DRMSystemID value is “urn:dvb:casystemid:19188”. In case of the Gateway centric approach defined by
[OIPF_CSP2], this DRMSystemID attribute indicates the DRM System(s) of UNIS-CSP-G which is supported by the
combination of OITF and CSP Gateway.

- attribute “protectionGateways” SHALL include a space separated list of zero or more names of supported CSP
Gateway types that are capable of supporting the DRM system indicated by attribute “DRMSystemID”. This attribute is
conditional mandatory and SHALL be specified in the case that the DRM System indicated by the “DRMSystemiD”
attribute is supported by the CSP Gateway when it is not an embedded CSPG (see Annex F of [OIPF_CSP2]). Valid
values for the scheme for the Gateway centric approach defined by [OIPF_CSP2] are “dtcp-ip” and “ci+". Values are
not case sensitive.

Examples:

<drm DRMSystemlID=""urn:dvb:casystemid:19188">TS BBTS TTS_BBTS MP4_PDCF</drm>

<drm DRMSystemlID=""urn:dvb:casystemid:12348" protectionGateways=""ci+">TS_PF TTS_PF</drm>
<drm DRMSystemlID=""urn:dvb:casystemid:12348" protectionGateways=""dtcp-ip''>TS_PF</drm>
<drm DRMSystemlID=""urn:dvb:casystemid:6304"">TS_PF</drm>

9.3.11 Media profile capability indication

If an OITF supports streaming A/V content to the client, the client SHALL indicate this by including a non-empty list of
<audio_profile> and/or <video_profile> elements in the RUI client capability description. The <audio_profile> and
<video_profile> elements SHALL adhere to the following requirements in addition to what has been defined by bullet v)
and w) of [Req. 5.2.1.a] of CEA-2014-A:

= Valid values for the “type” attribute of the <audio_profile> and <video_profile> elements include the MIME
types given in section 3 of [OIPF_MEDIAZ2].

= Valid values for the name attribute of the <audio_profile> and <video_profile> elements SHALL include the
DLNA media format profiles (as required by CEA-2014-A) as well as the following:

o for <video_profile> elements: the system format name, the video format name and the audio format
name for A/V contents, concatenated with an underscore ©_’, as defined in section 3 of
[OIPF_MEDIAZ2]. 2D and 3D capabilities SHALL be signalled separately.

o for <audio_profile> elements: the audio format name for pure audio contents in Table 4 of
[OIPF_MEDIAZ2].

o for both <video_profile>, and <audio_profile> elements, it is allowed to include multiple profile names
corresponding to the same MIME type, by separating each profile name with a whitespace character.

= Valid values for the “transport”-attribute include (a space-separated list of) the protocol names as defined in the
column “Name for <protocol>" in Annex E.1 of [OIPF_PROT2], whereby the value “http” as specified as
default value for the “transport”-attribute in CEA-2014-A SHALL correspond to value “http-get”. HAS support
(as defined by [OIPF_HAS?2]) is indicated by using “has” as the protocol name as indicated in Annex E.1 of
[OIPF_PROT2]. MPEG DASH support (as defined by [OIPF_HAS2]) is indicated by using “dash” as the
protocol name as indicated in Annex E.1 of [OIPF_PROT2].

= The <video_profile> and <audio_profile> elements SHALL support a new attribute called “DRMSystemID”,
which SHALL include a space separated list of zero or more DRM system IDs supported for the media
profile(s), whereby the DRMSystemID SHALL correspond to a <drm> element (as defined in section 9.3.10.
about DRM capability indication) with the same value for attribute “DRMSystemID”. In the case the attribute
“DRMSystemID” is specified, non-protected A/V contents of the media profile(s) SHALL be also supported.
For non protected media profile(s), this attribute MAY be omitted (see Annex F for more information).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 351 (415)

= Next to providing the list of supported audio and video profiles, the client SHALL include an <audio_profile>
element and/or a <video_profile> element with the value “application/vnd.oipf.ContentAccessStreaming+xml”
for attribute “type”, to indicate support for the content access description document format as defined in section
4.7.1 as value for the “data” attribute of the A/V Control object as defined in section 7.14 to initiate the
streaming of content.

Examples:
<video_profile type="application/vnd.oipf.ContentAccessStreaming+xml'/>

<video_profile
name="TS_MPEG2_SD_25_AC3 TS_AVC_HD_25 HEAAC"
type=""video/mpeg"
DRMSystemID=""urn:dvb:casystemid:19188"
, transport="rtsp-rtp-udp"
>

<video_profile
name="'"MP4_MPEG2_SD_25_AC3 MP4_AVC_HD_25_HEAAC"
type="video/mp4"
transport="http-get"

/>

<video_profile
name="TS_AVC_HD 25 HEAAC"
type="application/x-dtcpl"
DRMSystemID=""urn:dvb:casystemid:12348"
transport="http-get"

/>

<audio_profile name="MPEG1_L3" type="audio/mpeg" transport="http-get'/>

The example below is for a terminal supporting 3D video. Note that the first two values in the ‘name’ strings refer to 2D
capabilities, and the third value refers to 3D capabilities.

<video_profile
name=""TS_MPEG2_SD_25_AC3 TS_AVC_HD_25_HEAAC TS_AVC_3D_25 HEAAC"
type=""video/mpeg"
DRMSystemID=""urn:dvb:casystemid:19188"
transport="rtsp-rtp-udp"
/>
<video_profile
name="MP4_MPEG2_SD_25_AC3 MP4_AVC_HD_25_HEAAC MP4_AVC_3D_25_HEAAC"
type="video/mp4"
transport="http-get"
/>

9.3.12 Remote diagnhostics support
The OITF SHALL indicate support for remote diagnostics (via the APIs defined in section 7.11) using the following
element in the OITF’s capability description (see Annex F for more information):

<xs:element name="remote_diagnostics" type="'xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.13 SVG

The OITF SHALL indicate support for SVG through the base profile and Ul profile name fragment strings as defined in
section 9.2 or as defined in section 6.4 using the Remote Ul Client Capability Description defined for SVG in that section
- image/svg+xml.

In order to determine support for video tag in SVG the hasFeature() method with argument
“http://www._w3._.org/Graphics/SVG/feature/1_2/#Video” shall be used. Example:

var hasvideo = document. implementation.hasFeature(
"http://www.w3_org/Graphics/SVG/feature/1.2/#Video"™, null)

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 352 (415)

9.3.14 Third party notification support

If an OITF supports the 3" party polling mechanism as defined in section 5.6.2 of [CEA-2014-A], including the
extensions to section 5.6.2 as defined in Annex O, through the base profile and Ul profile name fragment strings as
defined in section 9.2 “Default Ul profiles” and the <pollingNoatifications> element defined in Annex F:

<xs:element name="pollingNotifications" type='"'xs:boolean'/>

If included, the value of this element SHALL be: (true]false).

9.3.15 Multicast Delivery Terminating Function support

The OITF SHALL indicate support for the multicast delivery terminating function (via the APIs defined in section
7.15.1) using the following element in the OITF’s capability description (see Annex F for more information):

<xs:element name="mdtf" type=''xs:boolean"/>
If included, the value of this element SHALL be: (true]false).

9.3.16 Other capability extensions

The following extensions to the capability profile elements defined in [Req. 5.2.1.a] of CEA-2014-A SHALL be
supported:

a. anadditional value “0.33x0.33” for attribute “scaling” of the <video_profile> element in bullet w) of [Req.
5.2.1.a], with the following related extension to the schema for type “scalingType” (see Annex F for more
information):

<xs:enumeration value="0.33x0.33"/>

9.3.17 HTML5 video

The OITF SHALL indicate support for HTML5 video through the base profile and Ul profile name fragment strings as
defined in section 9.2 and the <htmlI5_media> element as defined in Annex F:

<xs:element name="html5_media" type='"xs:boolean"/>

If included, the value of this element SHALL be: (true]false).

9.3.18 DLNA RUI Remote Control Function support

The OITF SHALL indicate support for the DLNA RUI RCF (via the APIs defined in section 7.17) using the following
element in the OITF’s capability description (see Annex F for more information):

<xs:element name="remoteControlFunction" type='"'xs:boolean'/>

If included, the value of this element SHALL be: (true|false).

9.3.19 Power Consumption

The OITF SHALL indicate support for wake-up using the following elements in the OITF’s capability description (see
Annex F for more information):

<xs:element name="wakeupApplication" type="xs:boolean'/>
<xs:element name="wakeupOITF" type="'xs:boolean"/>
<xs:element name="hibernateMode" type="'xs:boolean'/>

If included, the value of these elements SHALL be: (true|false).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 353 (415)

9.3.20 Widgets

The OITF SHALL indicate support for Widget APIs through the base profile and Ul profile name fragment strings as
defined in section 9.2 “Default Ul profiles” and the <widgets> element defined in Annex F:

<xs:element name="widgets" type='xs:boolean"/>
If included, the value of these elements SHALL be: (true|]false).

Widget APIs are the following Widget related methods/attributes defined in sections 7.2.1 and 7.2.2:
= ApplicationManager.onWidgetinstallation
= ApplicationManager.onWidgetUninstallation
= ApplicationManager.installWidget
= Application.startWidget
= Application.stopWidget
= ApplicationManager.uninstallWidget

= ApplicationManager.widgets

9.3.21 Buffer control of AV content playback API support
The OITF SHALL indicate support for buffer control of AV content playback through the APIs defined in section 7.14.8.

The schema of the <playbackControl> element is defined as follows:

<xs:element name="playbackControl" type="playbackType'/>
<xs:complexType name="playbackType">
<xs:simpleContent>
<xs:extension base="xs:boolean'>
<xs:attribute name="type" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

This element has the following semantics:

<playbackControl> - indicates whether or not the OITF supports the APIs defined in section 7.14.8 for control of
buffering strategy. If the value of the <playbackControl> element is true the attribute type SHALL include a non-
empty space separated list of names indicating the forms of AV content playback control which are supported.

= attribute “type” SHALL include a non-empty space separated list of names indicating the forms of AV content
playback control which are supported if the value of the <playbackControl> element is true.

Below is an extensible list of names which MAY be used for this attribute. These values are not case sensitive:
o “buffering”: indicates support for monitoring or controlling how full the playback buffer is reached.

0 “has”: indicates support for monitoring or controlling HAS properties including the Representation and
the Period.

o0 “dash” : indicates support for monitoring or controlling MPEG DASH properties including the
Representation and the Period.

9.3.22 Temporal Clipping

The OITF SHALL indicate support for temporal clipping using media fragments in URIs defined in section 8.3 by
including the <temporalClipping> element in the XML capabilities as follows:

<xs:element name="temporalClipping" type="hasCapability"/>
<xs:complexType name="hasCapability"/>

9.3.23 Capability Elements from other schemas

This specification describes capability elements which reflect the currently defined functionality. Additional functionality
can be supported by an OITF and in such cases, the specification of such additional functionality will be able to define

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 354 (415)

additional elements to be included. The set of capability elements is extendable through the following XML schema
mechanism.

<xs:iany namespace="##other"/>

9.3.24 Pointer support

The <pointer> element indicates whether or not the OITF provides the user with a way to make pointer-based input
(such as mouse or touch) to the browser. If the capability is true then the OITF SHALL be able to generate all mouse
event types as included in the Web Standards TV Profile [OIPF_DAE2_WEB].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 355 (415)

10 Security
10.1 Application / Service Security

This section defines the security model that applies to the privileged functionality exposed by an OITF to a server device.
The main purpose of the security model is to protect local client side functionality exposed by an OITF to JavaScript
from unauthorized use. For example in the case of PVR control API, untrusted servers should be prevented from
scheduling recordings.

The security model is quite generic, in a sense that it is not limited to particular privileged browser extensions, but can be
applied to any local client side functionality exposed to any kind of networked application.

10.1.1 OITF requirements

The following requirements SHALL apply to OITFs that expose security and/or privacy sensitive (i.e. privileged)
functionality in one or more of the cases described in section 10.1.3.

An OITF SHALL prevent a HTML document from a server from accessing the exposed security and/or privacy
sensitive functionality, unless the server can be correctly authenticated (see below), and the server is granted the
necessary privileges to access the security and/or privacy sensitive functionality.

The OITF SHALL authenticate the server during a TLS handshake through a valid X.509v3 certificate, that is
granted by a certificate authority that is trusted by the OITF. To this end, the OITF SHALL match the hosthname
or (sub)domainname of the HTML document’s URI with the hostname or (sub)domainname as specified in the
X.509v3 certificate, in the manner as defined in section 3.1 of [RFC2818].

The OITF SHALL support the Online Certificate Status Protocol (OCSP), at least the Lightweight Profile as
defined in RFC 5019 [RFC5019], to determine the current validity of the X.509v3 certificate before access to
privileged functionality is granted.

The OITF MAY support a private certificate extension for X.509v3 certificates called “permissions” that
specifies a set of permissions requested by a server to access privileged functionality, through zero or more
permission names associated with privileges. The OITF MAY grant an authenticated server the set of
permissions, which are each associated with the right to access a specific set of privileged functionality.
Allowed permissions names include the permission names as defined in section 10.1.4.

The set of permissions granted to an authenticated server by an OITF MAY depend on the occurrence of that
server on a whitelist or blacklist available to the OITF.

NOTE: Management of whitelists and blacklists available to an OITF is out of scope of this document.

If the server does not have the necessary privileges to access a property, method or object, or the server cannot
be properly authenticated, the OITF SHALL throw an error with the name property set to the value
"SecurityError". The example below shows how this can be used by applications:

try {
object.foo()

} catch(e)

{
if (e.name == "SecurityError") {

// 1 am not authorised to do this

3

s

The OITF MAY inform the user of the decision to deny a server requested access to privileged functionality and
MAY offer the user the option to override this decision.

10.1.2 Server requirements

The following requirements SHALL apply to servers that wish to access security and/or privacy sensitive (i.e. privileged)
functionality exposed by an OITF, in one or more of the cases defined in section 10.1.3:

A server SHALL specify the use of TLS for each HTML document that accesses privileged functionality (i.e. by
using the “https://” URI scheme for the URL of the HTML document).

A server SHALL expose a valid X.509v3 certificate during the TLS certificate handshake.

A server MAY request an OITF for certain permissions to access privileged functionality through a private
certificate extension. If a server wants to do so, the server MAY include a private certificate extension called
“permissions” as part of a valid X.509v3 certificate. If included, the “permissions” extension specifies a set of

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 356 (415)

permissions through zero or more permission names. Allowed permissions names include the permission names
as defined in section 10.1.4.

10.1.3 Specific security requirements for privileged JavaScript APIs

This section defines the specific security requirements for specific privileged JavaScript APIs, such as the
tuner/broadcast, recording, content download and DRM related APIs as defined in sections 7.13, 7.10, 7.4 and 7.6 in
addition to the security requirements defined in sections 10.1.1 and 10.1.2.

10.1.3.1 Security requirements for tuner control and lineup

Exposure of the channel line up and the video/broadcast APIs for controlling the (local) tuner as specified in section 7.13
SHALL adhere to the security requirements in sections 10.1.3.1.1 and 10.1.3.1.2.

10.1.3.1.1 Security requirements for exposure of the tuner channel lineup

Exposure of the channel line up of the (local) tuner as specified in section 7.13 SHALL adhere to the following security
requirements:

= the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server has the necessary
privileges to obtain the channel lineup of the (local) tuner. If the server does not have the necessary privileges,
or the server cannot be properly authenticated, the OITF SHALL:

o0 not convey the Client Channel Listing to the server through a HTTP POST.

0 not expose the Client Channel Listing to the DAE application through the getChannelConfig()
method of the video/broadcast object. Attempts to access this method SHALL throw an error as
defined in section 10.1.1.

10.1.3.1.2 Security requirements for tuner control
Control of the (local) tuner as specified in section 7.13 SHALL adhere to the following security requirements:

= the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server has the necessary
privileges to control the (local) tuner. If the server does not have the necessary privileges or the server cannot be
properly authenticated, the OITF SHALL deny requests to switch a local tuner to another channel by throwing
an error as defined in section 10.1.1.

10.1.3.2 Security requirements for recording
The recording functionality as specified in section 7.10 SHALL adhere to the following security requirements:

- Recording of broadcasted content: the OITF SHALL perform a security check (as defined by section 10.1.1) to see if
the server has the necessary privileges to schedule recordings of broadcasts. If the server does not have the necessary
privileges or the server cannot be properly authenticated, the OITF SHALL deny a server’s request to access the
functionality of the application/oipfRecordingScheduler object (as defined by section 7.10.1), and SHALL
also not expose the Client Channel Listing, neither through the HTTP POST, nor through the getChannelConfig()
method. Furthermore, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from the
server attempts to access any properties or methods on the application/oipfRecordingScheduler object.

- Recording of current A/V content broadcasted: the OITF SHALL perform a security check (as defined by section
10.1.1) to see if the server has the necessary privileges to record the current broadcast (as defined in section 7.13.2). If the
server does not have the necessary privileges or the server cannot be properly authenticated, the OITF SHALL deny a
server’s request to start a recording of the broadcast currently rendered by the video/broadcast object by throwing
an error as defined in section 10.1.1.

- Control over and exposure of scheduled recordings: the OITF SHALL restrict the visibility and control over scheduled
recordings to those scheduled recordings that were initiated through a server from the same FQDN that scheduled the
recordings.

10.1.3.3 Security requirements for content download functionality
The content download functionality as defined in section 7.4 SHALL adhere to the following security requirements:

- Initiating a download: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server has
the necessary privileges to initiate a download. If the server does not have the necessary privileges or the server cannot be
properly authenticated, the OITF SHALL NOT start downloading the content after receiving a content-access description
document as defined in section 4.6.2.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 357 (415)

NOTE 1: The server is the server that served the HTML document or third-party notification that includes a link to a
content-access description document. This is not necessarily the same server from which the content is downloaded.

NOTE 2: The URL from which a content item is downloaded (i.e. as specified by a <ContentURL> element in the
content-access description document) does not have to be protected by TLS.

10.1.3.4 Security requirements for DRM related functionality

The DRM control functionality (i.e. the application/oipfDrmAgent embedded object) as defined in section 7.6
SHALL adhere to the following security requirements:

- Accessing the DRM agent: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server
has the necessary privileges to interact with the DRM agent, i.e. by accessing the DRM agent embedded object as
specified in section 7.6.1. If the server does not have the necessary privileges, or the server cannot be properly
authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from that server
attempts to access any of its properties or methods on the DRM agent embedded object.

10.1.3.5 Security requirements for IMS functionality

The IMS functionality (i.e. the application/ oipfCommunicationServices embedded object) as defined in
section 7.8 SHALL adhere to the following security requirements:

- Accessing the IMS embedded object: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if
the server has the necessary privileges to interact with the IMS functionality, i.e. by accessing the IMS embedded object
as specified in section 7.8. If the server does not have the necessary privileges, or the server cannot be properly
authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from that server
attempts to access any of the classes, properties or methods defined in section 7.8.

10.1.3.6 Security requirements for metadata processing functionality

The metadata processing functionality (i.e. the application/oipfSearchManager embedded object and other
APIs) as defined in section 7.12 and 7.13.3 SHALL adhere to the following security requirements:

- Accessing the search manager: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the
server has the necessary privileges to interact with the search manager, i.e. by accessing the
application/oipfSearchManager embedded object as specified in section 7.12.1. If the server does not have the
necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as defined in
section 10.1.1 when an application loaded from that server attempts to access any of the properties or methods on the
SearchManager embedded object.

- Accessing enhanced metadata: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the
server has the necessary privileges to access the extensions to video/broadcast for accessing EIT p/f information
specified in section 7.13.3, in order to prevent misuse of the EIT p/f information If the server does not have the necessary
privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as defined in section 10.1.1
when an application loaded from that server attempts to access to the programmes property of the video/broadcast
object specified in section 7.13.3.

10.1.3.7 Security requirements for configuration and settings functionality

The configuration and settings functionality (i.e. the appl ication/oipfConfiguration embedded object and other
APIs) as defined in section 7.2.8 SHALL adhere to the following security requirements:

- Reading and madifying configuration and/or settings: the OITF SHALL perform a security check (as defined in section
10.1.1) to see if the server has the necessary privileges to interact with the configuration functionality, i.e. by accessing
the configuration embedded object as specified in section 7.3.1. If the server does not have the necessary privileges, or
the server cannot be properly authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an
application loaded from that server attempts to access any of the classes, properties or methods defined in section 7.2.8.

10.1.3.8 Security requirements for APIs for OITFs under the control of a service
provider

APIs for OITFs under the control of a service provider SHALL adhere to the following security requirements:

- Accessing the extended tuner control APIs: the OITF SHALL perform a security check (as defined in section 10.1.1) to
see if the server has the necessary privileges to interact with the extended AVcontrol APIs as specified in section 7.13.9.
If the server does not have the necessary privileges or the server cannot be properly authenticated, the OITF SHALL
throw an error as defined in section 10.1.1 when an application loaded from that server attempts to access any of the
classes, properties or methods defined in section 7.13.9.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 358 (415)

- Accessing the extended PVR APIs: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if
the server has the necessary privileges to interact with the extended PVR APIs as specified in section 7.10.4. If the server
does not have the necessary privileges or the server cannot be properly authenticated, the OITF SHALL throw an error as
defined in section 10.1.1 when an application loaded from that server attempts to access any of the classes, properties or
methods defined in section 7.10.4.

- Accessing the download manager: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the
server has the necessary privileges to interact with the download manager, i.e. by accessing the
application/oipfDownloadManager embedded object as specified in section 7.4.3. If the server does not have the
necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as defined in
section 10.1.1 when an application loaded from that server attempts to access any of the classes, properties or methods
specified in section 7.4.3.

- Accessing all downloads: the OITF SHALL perform a security check (as defined in section 10.1.1) to see if the server
has the necessary privileges to manage downloads not initiated by the current application, i.e. by accessing the downloads
property of the application/oipfDownloadManager embedded object as specified in section 7.4.3. If the server
does not have the necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error
as defined in section 10.1.1 when an application loaded from that server attempts to access this property.

- Accessing the power management APIs: the OITF SHALL perform a security check (as defined in section 10.1.1) to see
if the server has the necessary privileges to interact with the setPowerState method in section 7.3.3. If the server does not
have the necessary privileges or the server cannot be properly authenticated, the OITF SHALL throw an error as defined
in section 10.1.1 when an application loaded from that server attempts to access that method.

10.1.3.9 Security requirements for remote diagnostics and management API

The remote diagnostics and management API (i.e. application/oipfRemoteManagement) as defined in section
7.11.1) SHALL adhere to the following security requirements:

- Accessing remote diagnostics and management parameters and/or settings: the OITF SHALL perform a security check
(as defined in section 10.1.1) to see if the server has the necessary privileges to interact with the remote diagnostics and
management functionality, i.e. by accessing the appl ication/oipfRemoteManagement embedded object as
specified in section 7.11.1. If the server does not have the necessary privileges, or the server cannot be properly
authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from that server
attempts to access any of the classes, properties or methods defined in section 7.11.1.

10.1.3.10 Security requirements for parental control manager

The parental control manager API (i.e. application/oipfParentalControlManager) as defined in section
7.9.1) SHALL adhere to the following security requirements:

- Accessing parental control manager functionality: the OITF SHALL perform a security check (as defined in section
10.1.1) to see if the server has the necessary privileges to interact with the parental control manager functionality, i.e. by
accessing the application/oipfParentalControlmanager embedded object as specified in section 7.9.1. If the
server does not have the necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an
error as defined in section 10.1.1 when an application loaded from that server attempts to access any of the classes,
properties or methods defined in section 7.9.1.

10.1.4 Permission names

This section describes a non-limited set of permission names that MAY be included as part of the “permissions”
extension of a X.509v3 certificate as defined in sections 10.1.1 and 10.1.2:

= “permission_tuner control_lineup”: this permission name allows a server to receive/fetch the tuner’s channel
line-up and to switch an OITF’s local tuner to another channel and to functionality as specified in section 7.13.

= “permission_tuner_lineup” : this permission name allows a server to receive/fetch the tuner’s channel line-up as
specified in section 7.13.

= “permission_tuner_control” : this permission name allows a server to switch an OITF’s local tuner to another
channel as specified in section 7.13.

= “permission_recording” : this permission name allows a server to receive/fetch the tuner’s channel line-up, and
to instantiate the scheduler object (as defined by section 7.10.1) and access its functionality, and to access the
additional functionality as specified in section 7.13.2 for the video/broadcast object to record and timeshift
the current broadcast.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 359 (415)

= “permission_download™ : this permission name allows a server to initiate downloads.

= “permission_drmagent™ : this permission name allows a server to interact with the DRM agent, i.e. by accessing
the DRM agent embedded object as specified in section 7.6.1

= “permission_metadata” : this permission name allows a server to access the DVB EIT p/f information of the
current channel through the “programmes” property of the video/broadcast object, as specified in section.
7.13.3.

= “permission_metadata search” : this permission name allows a server to access the search functionality
provided client-side metadata search functionality (as defined in section 7.12.1).

= “permission_extendedAV” : this permission name allows a server to interact with the extended A/V control
functionality provided by the OITF, as defined in section 7.14.7.

= “permission_recordingsmanager™ : this permission name allows a server to interact with the recording
scheduler on the OITF using the APIs defined in section 7.4.3 to manage recordings initiated by the current
application.

= “permission_recordingsmanager_all’ : this permission name allows a server to interact with the recording
scheduler on the OITF using the APIs defined in section 7.4.3 to manage all recordings, including those initiated
by other applications.

= “permission_recordingsmanager_samedomain’’ : this permission name allows a server to interact with the
recording scheduler on the OITF using the APIs defined in section 7.4.3 and manage recordings initiated by
applications from the same FQDN.

= “permission_clientCOD™ : this permission name allows a server to interact with the CoD catalogue browsing
functionality provided by the OITF, as defined in section 7.12.

= “permission_settings™ : this permission name allows a server to modify user settings and configuration using
the APIs defined in section 7.3.1.

= “permission_downloadmanager” : this permission name allows a server to interact with the download manager
on the OITF using the APIs defined in section 7.4.3 to control downloads initiated by the current application.

= “permission_downloadmanager_all” : this permission name allows a server to interact with the download
manager on the OITF using the APIs defined in section 7.4.3 and manage all downloads, including those
initiated by other applications.

= “permission_downloadmanager samedomain’ : this permission name allows a server to interact with the
download manager on the OITF using the APIs defined in section 7.4.3 and manage downloads initiated by
applications from the same FQDN.

= “permission ims”: this permission name allows a server to interact with an IMS Gateway using the APIs defined
in section 7.8.

= “permission_remotemanagement™: this permission name allows a server to interact with an remote diagnostics
and management API defined in section 7.11.

= “permission_gatewayinfo™ : this permission name allows a server to interact with the gateway discovery
functionality provided by the client, as defined in sections 4.2 and 7.7.

= “permission_parentalcontrolmanager” : this permission name allows a server to interact with the parental
control manager on the OITF using the APIs defined in section 7.9 to override the parental control settings of an
OITF.

= “permission_widget” : this permission name allows a server to interact with installed Widgets using the Widget
APIs defined in section 9.3.20.

= “permission_wakeup” : this permission name allows a server to setup wake-up requests using the APIs defined
in section 7.3.3.

= “permission_set_power” : this permission name allows a server to set the power state to ON or
ACTIVE_STANDBY using the setPowerState() method defined in section 7.3.3.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 360 (415)

10.1.5 Loading documents from different domains

The contents of an <iframe>, <embed> or <object> element may be retrieved from an FQDN other than the one
from which the top-level document is loaded. In this case, the OITF SHALL enforce security restrictions between the
contents of the element and the parent document. These restrictions may be based on the nested browsing context as
defined in section 5.1.1 (“Nested Browsing Contexts” of the HTMLS5 specification as referenced by [OIPF_DAE2_WEB]
and the security restrictions formalised in section 5.2.1 (“Security”) of the HTMLS5 specification as referenced by
[OIPF_DAE2_WEB], excluding the features not included in this specification.

Documents SHALL be assigned the permissions associated with the FQDN from which they were loaded, as defined in
section 10.1.1, rather than the permissions associated with the initial document of the application. For example
documents loaded in an <iframe> element may be granted a different set of permissions from the top-level document
that contains the <iframe> element. Similarly, following a link to a document from a different FQDN may result in the
newly-loaded document having a different set of permissions than those granted to the previous document even though
they are within the same application boundary.

As described in section 5.1.3, for files requested with XMLHttpRequest, the Same-Origin Policy SHALL be extended
using the application domain as defined in section 5.1.3.

10.2 User Authentication

The OITF SHALL adhere to the user authentication requirements as specified in section 5 of [OIPF_CSP2].

10.3 DLNA RUI Remote Control

The communication from the remote control device (DLNA RUIC) is secured by establishing a secure connection using
SSL or TLS (i.e. HTTPS) if a <security> element in a DLNA RUIC Capability Description indicates that the Remote
Ul Client supports setting up a secure connection with the Remote Ul Server (see section 5.2.1 of [CEA-2014-A] for
more information). It is the responsibility of the DAE application to require the DLNA RUIC to verify the user behind
the remote control is actually the intended user. For example, this may be established by requiring a PIN number to be
entered. It is outside the scope of this specification what measures are taken by the DAE application to ensure correct
identification of the user.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 361 (415)

11DAE Widgets

DAE Widgets are a specialization of standard DAE applications. DAE Widgets are a profile of W3C Widgets. A
mandatory requirement in the referenced W3C Widgets 1.0 specifications remains mandatory also for DAE Widgets and
recommended and optional requirements in W3C Widgets 1.0 remain recommended and optional for the DAE Widgets,
unless explicitly specified differently inside this document.

11.1 Widgets Packaging and Configuration

A Widget SHALL be packaged in order to allow a single download and installation on an OITF. The packaging format
for the files of a Widget is defined in section 5 of [Widgets-Packaging]. Content inside the Widget package has to be
organized according to section 6 of [Widgets-Packaging].

Each Widget package SHALL contain a configuration document as defined in section 7 of [Widgets-Packaging]. All the
attributes of the <widget> element are supported with the following exceptions and clarifications:

1. This specification does not mandate support for any view mode (as defined in section 7.6.1 of [Widgets-Packaging])

2. “id” is mandatory for a DAE Widget. If this attribute is present in the manifest then the OITF SHALL use it.
Otherwise the OITF should generate it internally and assign to the Widget.

Widgets also support Internationalization and Localization as defined in section 8 of [Widgets-Packaging].

The steps for processing a Widget package and associated processing rules are described in section 9 of [Widgets-
Packaging].

11.2 Access Request

A Widget running on a OITF can request access to potentially sensitive APIs or resources. In order to avoid data leaking
a security model for Widgets is imposed. DAE Widgets SHALL run in a “Widget execution scope”, defined in section 2
of [Widgets-Access] as “the scope (or set of scopes, seen as a single one for simplicity's sake) being the execution
context for code running from documents that are part of the Widget package”. Note that section 3 of the same
specification states that “A user agent must prevent the Widget execution scope from retrieving network resources, using
any method (API, linking, etc.) and for any operation, unless the user agent has granted access to an explicitly declared
access request.”

DAE Widgets SHALL also support mechanisms to define network permissions as defined in section 3 and 4 of [Widgets-
Access].

Note that according to [Widgets-Access] an OITF “may grant access to certain URI schemes without the need of an
access request if its security policy considers those schemes benign”. Furthermore a OITF “may deny access requests
made via the access element (e.g. based on a security policy, user prompting, etc.)”.

11.3 Widget Interface

A set of application programming interfaces (APIs) and events are defined for Widgets that enable baseline functionality
such as exposing Widget metadata and runtime information.

The Widget interface primarily provides access to metadata derived from processing the Widget's configuration
document. DAE Widgets SHALL support the Widgets interface as defined in section 5 of [Widgets-APIs]. This
specification doesn't define any scheme handlers for the openURL () method.

The Widget interface makes use of the Storage interface defined in section 4.1 of [Web-Storage]. As an extension of that
specification, Protected Keys in a Storage Area as defined in section 6.1 of [Widgets-APIs] are also allowed.

Note that as defined in section 6 of [Widgets-APIs] an OITF SHOULD limit the total amount of space allowed for
storage areas per Widget. Furthermore an OITF SHALL support key and values at least 4kB long.

11.4 Digital Signature

Widget authors and distributors SHALL digitally sign Widgets as a mechanism to ensure continuity of authorship and
distributorship. Prior to instantiation, an OITF SHOULD use the digital signature to verify the integrity of the Widget
package and to confirm the signing key(s).

The process of digitally signing a W3C Widget is defined in [Widgets-DigSig].

Note that as defined in section 7.3 of [Widgets-DigSig] in case of signature validation failure the user SHALL be
notified; means or format of a failure notification are left up to implementers. The OITF MAY ask the user if the Widget

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 362 (415)

should be installed even if the validation failed or if the signature is missing. If the user accept launching the Widget, it
SHALL be run without access to privileged API.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 363 (415)

12Performance
12.1 Graphics Performance

12.1.1

Introduction (informative)

The performance metrics here have been derived from a set of graphics benchmarks programs — the can be run from
http://orange-opensource.github.com/orangemark/. Use of these benchmark programs is OPTIONAL in the present
document. It is up to a testing or certification regime where graphics performance is relevant to decide whether to use
them as-is, to use a derivative or to do something completely different.

Performance is expressed in a power of 2 logarithmic scale of the complexity of a page which can be updated at 25Hz.
For example, when moving a frame around,;

= 1 means moving one frame around

= 2 means moving 2 frames around simultaneously

= 3 means moving 4 frames around simultaneously

= 4 means moving 8 frames around simultaneously

= 5 means moving 16 frames around simultaneously

Although the benchmark programs measure performance up to 10, typical TV use-cases are unlikely to benefit from
values higher than 5. Values of 1 or 2 are unlikely to offer a good user experience, hence this section focuses on features
that can be supported with values 3, 4 or 5.

12.1.2 Performance Levels

Graphics performance is defined in terms of a number of performance levels. This version of the specification defines
two levels, “1” and “2". An OITF that advertises level “1” graphics performance in its device capabilities SHALL
comply with the minimum performance defined for that level. An OITF that advertises level “2” graphics performance in
its device capabilities SHALL comply with the minimum performance defined for that level. An OITF MAY not comply
with the minimum performance for even level “1” in which case it SHALL NOT advertise either levels “1” or “2” in its

device capabilities.

To be clear, in the present document, it is OPTIONAL for an OITF to support even graphics performance level “1”.

12.1.3 Minimum 2D Graphics Performance

The following table defines the minimum performance that SHALL be supported for animations using CSS transitions of
the properties listed in order for an OITF to advertise support for levels 1 and 2 respectively.

Values in this table indicate the number of elements of the specified target being animated simultaneously. The number is
expressed as a power of 2, i.e. a value of 3 SHALL mean 4 simultaneous animations, a value of 5 SHALL mean 16
simultaneous animations.

Table 17: Minimum 2D graphics performance

Target for CSS Property being Test Levell Level 2
the CSS animated
Property
Frame background-color 2d/frame-color 3 5
background-color, 2d/frame-color-alpha 3 5
opacity
left, top 2d/frame-left-top 3 5
left, top, opacity 2d/frame-opacity 3 5

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 364 (415)

transform: rotate

2d/frame-rotate

No
requirement

transform: scale

2d/frame-scale

3

transform: skew

2d/frame-skew

No
requirement

transform: matrix 2d/frame-matrix 3
border-radius 2d/frame-border-radius 3
width, height 2d/frame-width-height 3
linear-gradient 2d/frame-linear-gradient 3
Image left, top 2d/image-top-left 3
left, top, opacity 2d/image-opacity 3
transform: rotate 2d/image-rotate .No
requirement
transform: scale 2d/image-scale 3
transform: skew 2d/image-skew .No
requirement
transform: matrix 2d/image-matrix 3
Text left, top, opacity 2d/text-left-top 3
left, top, opacity 2d/text-opacity 3
transform: rotate 2d/text-rotate No

requirement

transform: scale

2d/text-scale

3

transform: skew

2d/text-skew

No
requirement

text-shadow

2d/text-emboss

3

12.1.4 Minimum 3D Graphics Performance

No minimum performance is defined for 3D transforms.

12.1.5 Minimum Canvas Performance

No minimum performance is defined for graphics using the Canvas element.

12.1.6 Minimum WebGL Performance

No minimum performance is defined for WebGL graphics.

12.1.7 Performance Measurement

The source for the benchmark suite can be found at https://github.com/Orange-OpenSource/orangemark,

version “V1.0.1”.

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 365 (415)

In order to address variation between successive runs of the tests, it is RECOMMENDED that any testing or certification
regime that references these graphics benchmarks programs, or a derivative of them, require them to be run several times
and the highest and lowest runs discarded.

The graphics benchmark programs measure frame rate using the mozPaintCount property (if supported), otherwise the
requestAnimationFrame() method (if supported — see [TIMING CONTROL]) or a polyfill based on
setTimeout(). OITFs MAY support other private or native mechanisms for measuring the frame rate. This
specification is silent about the acceptability of these private or native mechanisms, this is a matter for any testing or
certification regime that references these graphics benchmark programs.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 366 (415)

Annex A. Change History (Informative)

This Annex is intentionally left blank.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 367 (415)

Annex B. VOID

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 368 (415)

Annex C. Design Rationale (Informative)

C.1 The application model

As specified in section 4.3.2, applications are recorded within a hierarchy of applications. This hierarchy has a number of
benefits for an environment where multiple applications may be executing simultaneously, including:

= Clear separation of applications so that permissions granted to one application cannot be exploited by another.

= Simpler event dispatch, whether for key events or externally triggered events such as parental control changes,
caller ID integration, IM chat messaging, etc.

= The ability to deploy new applications without affecting other applications (either Ul or structure).
= The ability for service providers to manage groups of applications, including invisible applications.

Each object representing an application possesses an interface that provides access to methods and attributes that are
uniquely available to applications. For example, the facilities to create and destroy applications are accessed through such
methods.

Development and maintenance efficiencies are gained through distinct application boundaries. Code reuse is offered
through the application tree, permitting applications to export facilities as desired (for example, channel change logic
may be embedded in the “zapper” application and exported to an EPG application). The paired advantages of
compartmentalisation and code re-use are of increasing value as the number of authoring entities and applications grows
— what is of marginal additional value for one authoring entity and three applications is of significant value for 10
authoring entities and 50 applications.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 369 (415)

Annex D. Clarification of Download CaD, streaming CoD and CSP
interfaces (Informative)
D.1 Introduction

There are many different usage models and scenarios that one can think of when dealing with protected content and the
interactions the user or the device may have with a service provider. This includes usage models regarding user
registration, domain management, license acquisition, downloading content, etc. This informative annex aims to clarify
the usage of the interfaces as specified in sections 4.6, 4.7, 7.4 and 7.6. in the context of these interactions. However, this
annex will only show some of the generic mechanisms as offered by these interfaces, not only the browser interfaces, but
also including some of the local interfaces on the device (that actually do not need to be standardized) In the figure
below these are indicated by dotted lines.

The main scenario that we envision is the following:

IPTV Application
ament; (e.g. CoD store) License server Content server
pay CSP-T CDN
——————— .
etV 4 4 t 1
: metadata | x~
| control | a) UNIS-11(RTSP)
S —— do) ds) cl) d4) UNIT-17(RTP/HTTP)
| UNIS-7 UNIS-6 UNIS-6 \ UNIS-6 UNIS-CSP-T UNIS-13(IGMP)
: UNIS-8(SIP
|
' OITF
|
| A
| DAE RO N CsP
: DRM Agent [
|
| DAE application ~ d3)
|
| 91) Download !
N itvinimey Trigger d2) | Download
| | Metadata plug-in/ ,' manager
I plugin | handler | <
— T e I
: —A 1|_ Y Statlus View <,ld6)
Lo _ plug-in
| treaming |
Il steaming | e ¢3) .
| 194) plulg-:n ,‘ Notification &%)
| 4
: 3 : elu —f)_— L handler 93)
[S N N S
s YA _!I AV Player e2) ______
| Metadata | | OITF :
| CG cliont | ———— 9 E) _________ »/ embedded | |
1 L@

Figure 17: Main scenario

The OITF shows the Ul of the CoD store. With this Ul the user is able to interact with the CoD store to do

things, such as user registration, browsing the content offered by the CoD store, and purchase a license.

This can be done inside the browser using a standard CE-HTML interface. In the figure above, this is identified

by interface a.

In those deployments where the OITF supports the metadata CG client, an embedded application or a DAE
application can make use of metadata provided through a metadata CG client. This is identified by interface g*.

After purchasing/selection of the content the selected content needs to be fetched. To this end, the download

manager or the A/V embedded object needs to be triggered with information on how to fetch the content. This is
done by using a special descriptor, with an easily identifiable MIME type

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 370 (415)

“application/vnd.oipf.ContentAccessDownload+xml” in case of download, and
“application/vnd.oipf.ContentAccessStreaming+xml” in case of streaming. This is indicated by
interfaces d0, d1, d2, e0, el, and e2.

For certain steps in these interactions, the CoD store may need to interact with the DRM agent. This can be done
by talking directly to the DRM agent during a browser session using interfaces b0) and b1). Alternatively, the
<DRMControlinformation> element of the content access descriptor can be used to convey DRM specific
messages to the DRM agent. This is indicated by interface d3.

Note that both the DRM agent and Download manager are autonomous components that will be actively
performing their duties, irrespective whether there is an active browser session or not. They will have their own
interaction with e.g. the license server and download server, and possibly with the user. These interactions are
identified by interfaces c1, c2, d4, d5.

3. The download manager or A/V player fetch the content, as indicated by interfaces d4 and e2.

4. Once the content is fetched, playback can be started in the A/V player. When the stream is protected, the A/V
player will have to get a license from the DRM agent using interface f.

D.2 List of interfaces

Interface a: browse, select and purchase content from CoD store

This interface is used to interact with the CoD store for operations such as user registration, browsing the content offered
by the CoD store, and purchase a license. This is a standard CE-HTML/HTTP interface.

Interface b*: In-session interaction from web page with underlying DRM agent

Interface b0 (and the related interface b1l) is the application/oipfDrmAgent JavaScript embedded object interface as
defined in section 7.3. This interface will allow messages to be exchanged between pages from the CoD store and the
underlying DRM agent, whilst the user is having a user interface session with the CoD store. Examples of these messages
are Marlin Action tokens. This is useful to enable scenarios, such as subscription license acquisition, registration, domain
management, etc.

The interface basically consists of one method: sendDRMMessage(String msgType, String msg), which is very generic in
the sense that any kind of message can be exchanged. The exact payload and types of messages that could be exchanged
is defined in the [OIPF_CSP2]. An example of such message could be:
pluginElement = document.getElementByID("'drmplugin™™);
pluginElement.sendDRMMessage("'application/vnd.marlin.drm.actiontoken+xml",

“<marlin>.</marlin>",
"urn:dvb:casystemid:19188");

éobject id=""drmplugin' type="application/oipfDrmAgent"/>
Note that this API is designed to be asynchronous in nature, because certain interactions may take a indeterminate
amount of time. Therefore, it is not wise to make the method synchronous, since that could block the JavaScript engine.
To this end we have defined an event handler: onDRMMessageResult, to register a callback function that will be called
when the DRM agent completed handling of the message. For example:

function callbackF(String msglD, String resultMsg, Integer resultCode) {

1
document.getElementBy ID(""'drmplugin’) .onDRMMessageResult = cal lbackF;
An equivalent DOM2 event is also generated.

Content authors SHOULD be aware of the asynchronous nature of the API. Only after having received the callback
message, the web page can assume that the DRM agent has handled the DRM message. The service author may need to
define some visual cues to the user if he would like the user to wait for certain actions to finish.

Interface c*: Autonomous out-of-session interaction between DRM agent and CoD store

Interface c1 is the collection of interfaces between the DRM agent, the CoD store, the license server, etc. as defined in
the [OIPF_CSP2]. The interaction is typically done outside the scope of the browser, and also without the user being
involved. In the few cases where the user would be involved, the device will typically have its own “local” user interface

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 371 (415)

to handle the interaction with the user. In some of these the DRM agent would need to open a web page to the originating
CoD store, so that the user could resolve the issue directly with the store (e.g. using the rightsURL extracted from the
MPEG2_TYS). Since the user could be doing other things at that moment, it may not be appropriate to popup/replace the
current browser session without the user consent. Therefore, the DRM agent could issue a notification event that will get
listed along similar lines to a third-party notification event. The user would be notified that his attention is required with
respect to the DRM agent, and can then decide to take action and launch the browser.

In the figure above, these Ul interactions are identified by interface c2 and c3. These interfaces however are typically
local inside the OITF, and are not specified in more detail.

Interface d*: Downloading content

These interfaces are used for downloading content. In order to trigger the download, a special content-access descriptor
(the content access download descriptor) with an easily identifiable MIME type
“application/vnd.oipf.ContentAccessDownload+xml” is used. This descriptor contains all the relevant data
related to fetch the content. This content-access descriptor is typically provided by the CoD store. A browser application
can fetch this descriptor in various different ways, e.g. by following a link or through an XMLHttpRequest. This is
identified by interface d0. The content access download descriptor and MIME type are defined in Annex E. It contains
elements, such as <ContentURL> which indicates where the content item can be fetched, and <MetadataURL> to
indicate where additional metadata, such as genre, subtitles, artwork, etc. can be retrieved from.

Interface d1) (and related interface d2 are used to trigger/register the download with the download manager. This is done
by handing over the content access download descriptor to the download manager by calling method
registerDownload() on the application/oipfDownloadTrigger embedded object after retrieving the
content-access descriptor e.g. through XMLHttpRequest. Once the download is registered, the download manager will
take care that the content is downloaded. Since this may be a lengthy task, the download manager is an independent
process from the browser, that will perform its duty in the background even if the browser is closed. By making the
download manager an independent process of the browser, the user can in the meantime do other things.

Interface d3 is a local interface that is used to pass optional DRM messages carried in the content-access descriptor from
the Download manager to the DRM agent. These messages are included as part of one or more

<DRMControl Information> element inside the content access download descriptor (as defined by Annex E). These
may include messages (such as a Marlin preview license) in cases where license information and the content to be
downloaded can be packaged together.

Interface d4 is the actual interface for downloading the content. The protocols that can be used for downloading content
are defined in the Open ITPV Forum Protocols specification document. The default protocol is HTTP, with support for
HTTP Range requests. The HTTP Range requests are used in order for downloads to be able to resume after e.g. network
failure or device power-down, because as mentioned above, the download manager is an autonomous component that
must continue downloading the requested content items as a background process, even after a device power-down or
network failure, until it succeeds or the user has given permission to terminate the download.

Interface d5 defines an interface to enable error recovery for the download mechanism. It could be used to recover from
errors or other situations that lead to the corruption or deletion of the content/licenses or a current download to fail. An
example usage is as follows: to be able to refetch the content, and its licenses from the CoD store the OITF may
synchronize with the CoD store by issuing a secure HTTP GET request to the URL of element <OriginSite>
concatenated with “/synchronize” as defined by the content-access descriptor, after which the IPTV application
offering the content-download replies with an XML document describing the list of zero or more content IDs that had
previously been downloaded by the given user (i.e. it is assumed that the IPTV application offering the content download
still remembers which content a user has bought and downloaded before), using for example the following format:

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault=""qualified"
attributeFormDefault="unqualified'>
<xs:element name="'synchronizelist" type="SynchronizeType'/>
<xs:complexType name="SynchronizeType''>
<Xs:sequence>
<xs:element name="'content" type="'"ContentType"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name='"ContentType''>
<xs:sequence>
<xs:element name="'content_ID" type="xs:string" minOccurs="0"
maxOccurs=""unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:schema>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 372 (415)

Example:

<synchronizelist>
<content>
<content_ID>item 1</content_ID>
<content_ID>item 2</content_ID>

</content>
</synchronizelist>

NOTE: To authenticate the user, cookies or single sign on may be used.

The OITF MAY use this information to decide which content and which licenses to refetch. Refetching the content is
done by issuing a secure HTTP GET request to the following URL:

<OriginSite> + "/synchronize"™ + "?" + a <content_ID> value
after which the application offering the content download replies with the appropriate information to retrigger the

download by providing the appropriate content access download descriptor in order to trigger the download manager and
DRM agent to redownload the content and related licenses.

Interface d6: Although the download manager is an autonomous process, the user may sometimes want to view or
control the state of the download manager. To this end, the download manager will typically offer its own user interface,
which allows the user to manage the ongoing downloads (e.g. suspend/resume, cancel) and monitor the progress of the
items that are being downloaded.

In retail deployments this is typically a local user interface, for which no protocol needs to be defined. However, since it
may be useful for the user to have a quick overview of the current downloads, in section 7.15.1 of this document a
visualization embedded object called appl ication/oipfStatusView has been defined by which a (third-party)
server provider could include an overview of the status of the download manager as part of its UI. This is interface d6 in
the figure above.

NOTE: for managed deployments JavaScript interfaces may be needed to have more control over the Ul of the download
manager. This is covered by the download manager APIs in section 7.4.3.

Interface e*: Unicast Streaming and playback of downloaded content using A/V Control object

The A/V Control object as defined in section 7.14 may be used to render unicast streaming content triggered by a
content-access streaming descriptor (as specified in section 7.14.1.5) and may be used to play back (partially)
downloaded content by using the method setSource as specified in section 7.14.7.

Interface e0 can be used to pass for a content access streaming descriptor to set up a protected stream, by passing through
interface el the necessary information for the A/V player to set up the stream through interface e2, and for passing
included <DRMControlIinformation> messages to the DRM agent for DRM protection of the streamed content using
interface f.

Interface e0 can also be used to get feedback from the A/V player (such as DRM related playback errors as defined in
section 7.13.5) in case of playing streaming content or partially downloaded content (through method setSource()).

Interface f: Request license

The A/V Player will render the content. When the content is protected, the A/V embedded object will have to get the
necessary keys from the DRM agent using interface f in order to decrypt the content.

If the content is played inside the browser, interface el defines a callback event “onDRMRightsError” to allow the
page to handle DRM-related errors (in addition to c1).

Interface g*: Local metadata based applications

These interfaces are for use with local OITF embedded and DAE applications that may wish to use a metadata CG client
for browsing and selecting the content.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 373 (415)

D.3 Additional notes about Content-on-Demand

For a detailed specification of how devices and users are authenticated, we refer to [OIPF_CSP2]. For the security model
related to accessing the DRM agent and Download manager from an external source, such as a web page (i.e. to open up
the browser’s sandbox), we refer to section 10.1.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 374 (415)

Annex E. Content Access Descriptor Syntax and Semantics

E.1 Content Access Download Descriptor Format

An OITF that supports Content Download (i.e. if the <download> element has been given value “true” in the OITF’s
capability profile as specified in section 9.3.4) SHALL support parsing and interpretation of a Content Access Download
Descriptor with MIME type “application/vnd.oipf.ContentAccessDownload+xml”.

A valid Content Access Download Descriptor SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmIns:tns="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
xmIns:xml=""http://www.w3.0rg/XML/1998/namespace""
targetNamespace=""urn:oipf:iptv:ContentAccessDownloadDescriptor:2008-1"
elementFormDefault="qualified" attributeFormDefault="unqualified' >
<l-- schema filename is iptv-ContentAccessDownloadDescriptor.xsd -->
<I-- this schema redefines the generic Content Access Descriptor Schema iptv-
AbstractContentAccessDescriptor.xsd as defined in Annex E.3 by limiting the allowable
values for attribute "TransferType'™ to "playable_download™ and *"full_download" -->
<xs:redefine schemalLocation="iptv-AbstractContentAccessDescriptor.xsd">
<xs:simpleType name="TransferTypeEnum">
<xs:restriction base="tns:TransferTypeEnum">
<xs:enumeration value="full_download"/>
<xs:enumeration value="playable_download"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name=""ContltemType"'>
<xs:complexContent>
<xs:extension base="tns:ContltemType'>
<Xs:sequence>
<xs:element name="availabilityWindow" type=""tns:timeRangeType"
minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:redefine>

<xs:complexType name='timeRangeType"''>
<xs:attribute name="'start" type="xs:dateTime" use="required"/>
<xs:attribute name="lastJoinTime" type="'xs:dateTime"/>
<xs:attribute name="end" type="'xs:dateTime" use="‘required'/>
</xs:complexType>
</Xs:schema>

The semantics of the allowable values for attribute TransferType as defined by simple string type TransferTypeEnum is
as follows:

a) Attribute “TransferType”, which indicates the type of transfer used for the content, SHALL have one of the
following values:

i) “full_download”, which indicates that the content-item must be fully downloaded and stored before
playback.
i) “playable_download”, which indicates that the content-item is available for playback whilst it is being

downloaded and stored by the download manager. The term “playable_download” is used solely in the
context of the download manager and relates to storing the content (on persistent storage), and playing
the stored version, and does not relate to buffering in the context of HTTP streaming.

The <availabi lityWindow> element has the following semantics:
<availabilityWindow> - indicates a time range for which the content is available for download.

= attribute “start” defines the time at which data becomes available for download in this availability window.
Before this time, terminals should not attempt to acquire the content. All information needed for a download
SHALL be available for a terminal that attempts to acquire the download at this time.

= attribute “lastJoinTime” defines the last time in this availability window at which a terminal could start
acquiring the content and still acquire all of the content under optimum conditions.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 375 (415)

= attribute “end” defines the time at which data stops being available for download in this availability window.
NOTE: the purpose of indicating the end time is to provide information to a scheduling algorithm in the
terminal.

The syntax and semantics of the imported elements from the generic Content Access Descriptor Schema SHALL be as
defined in annex E.3.

NOTE: An OITF SHALL silently ignore unknown elements and attributes that are part of a Content Access Download
Descriptor.

E.2 Content Access Streaming Descriptor Format

An OITF SHALL support parsing and interpretation of a Content Access Streaming Descriptor with MIME type
“application/vnd.oipf.ContentAccessStreaming+xml”.

A valid Content Access Streaming Descriptor SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding=""UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmIns:tns="urn:oipf:iptv:ContentAccessStreamingDescriptor:2008-1"
xmIns:xml="http://www.w3.0rg/XML/1998/namespace""
targetNamespace=""urn:oipf:iptv:ContentAccessStreamingDescriptor:2008-1"
elementFormDefault="qualified" attributeFormDefault="unqualified'>
<I-- schema filename is iptv-ContentAccessStreamingDescriptor.xsd -->
<l-- this schema redefines the generic Content Access Descriptor Schema iptv-
AbstractContentAccessDescriptor.xsd as defined in Annex E.3 by limiting the allowable
values for attribute "TransferType'" to ''streaming" -->
<xs:redefine schemalLocation="iptv-AbstractContentAccessDescriptor.xsd">
<xs:simpleType name="TransferTypeEnum">
<xs:restriction base="tns:TransferTypeEnum">
<xs:enumeration value="'streaming"/>
</xs:restriction>
</xs:simpleType>
</xs:redefine>
</Xs:schema>
The semantics of the allowable values for attribute TransferType as defined by simple string type TransferTypeEnum is

as follows:

a) Attribute “TransferType”, which indicates the type of transfer used for the content, SHALL have one of the
following values:

i) “streaming”, which indicates that the content-item is streamed and should not be stored. This
TransferType value is required for unicast streaming using an A/V Control object as defined in section
7.14.1.5.

The syntax and semantics of the imported elements from the generic Content Access Descriptor Schema SHALL be as
defined in annex E.3.

The <notifyURL> element has no meaning in this context, SHOULD NOT be encoded and SHOULD be ignored by
OITFs if present.

NOTE: An OITF SHALL silently ignore unknown elements and attributes that are part of a Content Access Streaming
descriptor.

E.3 Abstract Content Access Descriptor Format

This section specifies the generic (i.e. "abstract") content access descriptor XML Schema that forms the basis for the
XML Schemas of document types: application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml.

An Abstract Content Access Descriptor SHALL adhere to the semantics as defined in the bulleted list below. In this
bulleted list, optional means optional for server, but mandatory to be supported on OITFs that have indicated support for
MIME type “application/vnd.oipf.ContentAccessDownload+xml”. Mandatory means mandatory for the
server to include this element in the content access descriptor.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 376 (415)

1. <Contents> - mandatory element which is a container for one or more associated <Contentltem> elements as child
element.

2. <Contentltem> - mandatory element which indicates a content-item. All other elements listed below are child-
elements of a <Contentltem> element.

3. <Title> - mandatory element which indicates a user interpretable name to describe the content item. In case of
content download, it may serve as a basis/suggestion for the actual filename used for storing the downloaded content
item. It is recommended for an OITF to not require the user to enter a filename and select the storage device for
storing a downloaded content item.

4. <Synopsis> - optional element which indicates a user interpretable description of the content item.

5. <OriginSite> - mandatory element which indicates the URL of the site from which this content access description
document can be downloaded. Typically this is the site from which the content is/can be purchased.

6. <OriginSiteName> - Optional element, which gives the friendly name describing the origin site.
7. <ContentlD> - Optional element which gives a unique identification of the content item relative to the OriginSite.

8. <ContentURL> - mandatory element which indicates the URL from which the content can be fetched. The element
has the following attributes:

a. Optional attribute “DRMSystem1D”, which indicates the DRM system for which this URL applies, using a
value as defined by element DRMSystemID in Table 9 of section 3.3.2 of [OIPF_METAZ2]. For example, for
Marlin, the DRMSystemID value is “urn:dvb:casystemid:19188”. This attribute is used for linking a
<ContentURL> to a corresponding <DRMControlinformation> element with the same DRMSystemID value. If
the “DRMSystemID” attribute is not specified or has value empty string, then this indicates that the content is
not DRM protected.

b. Attribute “TransferType”, which indicates the type of transfer used for the content. The concrete values that
are allowed for this attribute are defined in annexes E.1 and E.2 for document types
application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml.

¢. Mandatory attribute “Size”, which indicates the size of the content item in bytes. If the size is unknown (e.g. in
case of streaming), the value of this element is -1. If the value is greater or equal to 0, the value given here
SHALL correspond to the value given to the Content-Size HTTP header if the content is fetched through an
HTTP ContentURL. If after downloading the content item the size of the downloaded content item does not
match the indicated size parameter, the OITF SHALL report failed download (if the
application/oipfDownloadManager object is used an event is dispatched to the
onDownloadStateChange listener(s) with reason code 3, “The item is invalid due to bad checksum or
length”). The OITF SHOULD remove the downloaded content item

d. Optional attribute “MD5Hash”, which indicates the MD5 hash value [RFC1321] of the content item. This value
is used to check the correctness of the downloaded file. If after downloading the content item the MD5 hash
value of the downloaded content item does not match the indicated MD5 hash value, it is recommended for the
OITF to remove the downloaded content item.

e. Optional attribute “Duration”, which indicates the media playback duration of the media item in the following
form "hh:mm:ss".

f. Mandatory attribute “MIMEType”, which indicates the MIME type of the content item. It is recommended for
an OITF to inform the user if the content-type of a content item being retrieved cannot be interpreted by the
OITF.

g. Optional attribute “MediaFormat”, which describes the media format of the content item. The value of this
element should be one of the terms defined by the AVMediaFormatCS classification scheme specified in
[OIPF_METAZ2].

h. Optional attribute “VideoCoding”, which describes the coding format of the video. The value of this element
should be one of the terms defined by the VisualCodingFormatCS classification scheme defined in
[OIPF_METAZ].

i. Optional attribute “AudioCoding”, which describes the coding format of the audio. The value of this element
should be one of the terms defined by the AudioCodingFormatCS classification scheme defined in
[OIPF_METAZ2].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 377 (415)

j. Optional attribute “PictureFormat”, which describes the picture format of the video. The value of this
element should be one of the terms defined by the PictureFormatCS classification scheme defined in [TS 102
822-3-1], with the URN "urn:tva:metadata:cs:PictureFormatCS:2011". Only the following
termIDs defined in TVA PictureFormatCS may be used:

o 1(2D Video)
0 2.1.1 (Plano-Stereoscopic Video . Frame-Compatible 3D . Side-by-Side 3D Format)
0 2.1.2 (Plano-Stereoscopic Video . Frame-Compatible 3D . Top-and-Bottom 3D Format).

Multiple <ContentURL> elements may be included for a single <Contentltem>, as long as each <ContentURL>
element has a different value for the “DRMSystemID” attribute.

9. <MetadataURL> - optional element which indicates the URL from which additional metadata can be fetched for the
content item, such as artwork, subtitle files. By default the metadata must be a text/xml document formatted
according to TV anytime, as defined in [OIPF_METAZ2].

10. <NotifyURL> - optional element which indicates the URL to which an HTTP GET request SHALL be made by the
OITF, after the content-item has been fully and successfully fetched, in order to inform the server of the successful
completion of the transfer. If any content is returned from the <NotifyURL>, it MAY be shown in the browser.

11. <lconURL> - optional element which indicates the URL of an image which is a visual representation of the item that
is being downloaded. Valid content types include the image formats as listed in section 9 of [OIPF_MEDIAZ2].

12. <ParentalRating> - optional element which indicates the parental rating value (e.g. “PG-13") for this content item.
The element has the following attributes:

a. Attribute “Scheme”, which indicates the name of the parental rating scheme that is used for indicating the value.
Valid rating scheme names include the ParentalRating classification scheme names as identified by property
“scheme” of the ParentalRating object as defined in section 7.9.4.

b. Attribute “Region”, which indicates the region to which the parental rating applies. Valid region names include
the alpha-2 region codes as defined in ISO 3166-1. Values are not case sensitive.

Multiple <ParentalRating> elements may exist, as long as each <ParentalRating> element has a different value for
the “Scheme” or the “Region” attribute.

13. <DRMControlInformation> - optional element which allows the inclusion of DRM related information that SHALL
be passed to the DRM agent. This element SHALL adhere to the DRMControlInformation Type Semantics as
defined in Table 9 of section 3.3.2 of [OIPF_METAZ2]. For Marlin, additional semantics are defined in section 4.1.5
of [OIPF_CSP2]. This element SHALL be included for any DRM System ID for which a corresponding
“DRMSystemID” value was specified as attribute of a <ContentURL> element.

Multiple <DRMControlinformation> elements MAY be included for a single <Contentltem>, as long as each
<DRMControlinformation> element has a different value for its “DRMSystemID” child-element.

An Abstract Content Access Descriptor SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified' >
<I-- schema filename is iptv-AbstractContentAccessDescriptor.xsd -->
<I-- this is the generic (i.e. "abstract™) content access descriptor XML Schema that forms the
basis for the XML Schemas of document types: application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml. This schema includes the definition for
abstract type ""DRMPrivateDataType'" (as defined in Open IPTV Forum Solution Specification Volume
3 Metadata Release 2) and its specific instance type "MarlinPrivateDataType' or
"HexBinaryPrivateDataType"” (as defined in Open IPTV Forum Solution Specification Volume 7
Authentication, Content Protection and Service Protection Release 2) -->
<xs:import namespace="http://www.w3.0org/XML/1998/namespace"’
schemalLocation="http://www.w3.0rg/2001/xml .xsd"/>
<xs:include schemalLocation="csp-MarlinPrivateDataType.xsd"/>
<xs:include schemalLocation="csp-DRMPrivateDataType.xsd"/>
<xs:include schemalLocation="csp-HexBinaryPrivateDataType.xsd"/>

<xs:element name=""Contents" type=""ContentsType"/>
<xs:complexType name='"'ContentsType"''>
<xs:sequence>
<xs:element name="Contentltem"” type="ContltemType" maxOccurs="unbounded"/>
</Xs:sequence>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 378 (415)

</xs:complexType>
<xs:complexType name="'ContltemType"''>
<xs:sequence>
<xs:element name="Title" type="TitleType" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="Synopsis" type="SynopsisType'" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="0OriginSite" type="xs:anyURI" minOccurs="1"/>
<xs:element name="OriginSiteName"™ type="xs:string" minOccurs="0"/>
<xs:element name="ContentlID" type="xs:string" minOccurs="0"/>
<xs:element name="ContentURL" type=""ContentURLType" maxOccurs="unbounded"/>
<xs:element name="MetadataURL" type="xs:anyURI'" minOccurs="0"/>
<xs:element name="NotifyURL" type="xs:anyURI"™ minOccurs="0"/>
<xs:element name="IlconURL" type="xs:anyURI"™ minOccurs="0"/>
<xs:element name="ParentalRating"” type="ParentalRatingType'" minOccurs="0"
maxOccurs=""unbounded" />
<xs:element name="DRMControlInformation" type="DRMControllInformationType"
minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="TitleType'>
<xs:simpleContent>
<xs:extension base="'xs:string">
<xs:attribute ref="xml:lang"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name='"'SynopsisType"''>
<xs:simpleContent>
<xs:extension base="'xs:string">
<xs:attribute ref="xml:lang"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="ContentURLType"'>
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attribute name="DRMSystemlID" type="'xs:string" use="optional'/>
<xs:attribute name="TransferType" type="TransferTypeEnum" use="‘required'/>
<xs:attribute name="MD5Hash" type="'xs:string" use="optional'/>
<xs:attribute name="Duration" type="xs:duration'" use="optional"/>
<xs:attribute name="Size" type="xs:integer" use="required'/>
<xs:attribute name="MIMEType" type="'xs:string" use="‘required'"/>
<xs:attribute name="MediaFormat" type="xs:string" use="optional'/>
<xs:attribute name="VideoCoding" type="xs:string" use="optional"/>
<xs:attribute name="AudioCoding" type="xs:string" use="optional"/>
<xs:attribute name="PictureFormat" type='Xxs:string" use="optional'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<I-- The TransferType is a string in this generic content access descriptor. The values of the
TransferTypeEnum are restricted in the document instance types
"application/vnd.oipf.ContentAccessDownloadDescriptor' and
"application/vnd.oipf.ContentAccessStreamingDescriptor™ as defined in Annexes E.1 and E.2.-->
<xs:simpleType name="TransferTypeEnum">
<xs:restriction base='"xs:string"/>
</xs:simpleType>
<xs:complexType name="ParentalRatingType'>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Scheme"™ type='"'xs:string" use="optional"/>
<xs:attribute name="Region" type="'xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:complexType name="DRMControlInformationType'>
<xs:sequence>
<xs:element name="DRMSystemlID" type=''Xxs:string"/>
<xs:element name="DRMContentlID" type=''xs:string"/>
<xs:element name="RightslssuerURL" type="xs:anyURI"™ minOccurs="0"/>
<xs:element name="SilentRightsURL" type="xs:anyURI'" minOccurs="0"/>
<xs:element name="PreviewRightsURL" type='"xs:anyURI" minOccurs="0"/>
<xs:element name=""DoNotRecord" type='xs:boolean' minOccurs="0"/>
<xs:element name="DoNotTimeShift" type="xs:boolean" minOccurs="0"/>
<xs:element ref="DRMGenericData" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="DRMPrivateData" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

<xs:element name="DRMGenericData" type="DRMGenericDataType"/>
<xs:element name="DRMPrivateData" type="DRMPrivateDataType"/>

<xs:complexType name="DRMGenericDataType"''>
<xs:sequence>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 379 (415)

<Xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>

<xs:element name="MarlinPrivateData" type="MarlinPrivateDataType"
substitutionGroup="DRMPrivateData'/>

<xs:element name="HexBinaryPrivateData" type='"HexBinaryPrivateDataType"
substitutionGroup="DRMPrivateData'"/>
</xs:schema>

An OITF SHALL silently ignore unknown elements and attributes that are part of a content-access descriptor

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 380 (415)

Annex F. Capability Extensions Schema

This annex contains the schema that includes the extensions and modifications to the capability negotiation mechanism

as defin
schema

ed in section 9.3. This schema redefines and adds the necessary extensions to the existing capability description
as defined in annex C of CEA-2014[CEA-2014-A]. The schema in this annex SHALL be used instead of the

existing capability description as defined in annex C of CEA-2014 [CEA-2014-A]. Note that for the additional
“0.33x0.33” value for “scalingType” as defined in section 9.3.15, a special construction has been defined. See the last
two paragraphs of this annex for more information.

<?xml
<XS:SsC

<1-—
<1__

-——>
<XS
<XS

</x
<i-
<Xs

</x
<i-
<Xs

</x
<i-
<XS

</x
</x
<I-

Volume

version="1.0" encoding=""1S0-8859-1"7?>
hema xmlns="urn:oipf:config:oitf:oitfCapabilities: 2011-1"
xmIns:xs="http://www.w3.0rg/2001/XMLSchema""
targetNamespace=""urn:oipf:config:oitf:oitfCapabilities: 2011-1"
elementFormDefault="qualified" attributeFormDefault="unqualified'>
schema fTilename is config-oitf-oitfCapabilities.xsd -->
Redefined uiExtensionsType of the original schema as defined in Annex C of CEA-2014
(i.e. imports/ce-html-profiles-1-0.xsd) to add the new elements defined in Section 9.3
of Open IPTV forum Volume 5 Declarative Application Environment Release 2 specification.

:redefine schemalLocation=""imports/ce-html-profiles-1-0.xsd">
:complexType name="uiExtensionType'>
<xs:complexContent>
<xs:extension base="uiExtensionType"'>
<xs:choice minOccurs="0" maxOccurs="unbounded>
<xs:element name="video_broadcast" type="videoBroadcastType" minOccurs="0"
maxOccurs=""unbounded"/>
<xs:element name="overlaylocaltuner" type="overlayType'/>
<xs:element name="overlaylPbroadcast" type="overlayType"/>
<xs:element name="recording" type="pvrType'/>
<xs:element name="parentalcontrol’ type="parentalControlType'/>
<xs:element name="extendedAVControl' type="'xs:boolean'/>
<xs:element name="clientMetadata" type="metadataType'/>
<xs:element name="configurationChanges" type=''xs:boolean"/>
<xs:element name="communicationServices" type='"'xs:boolean'/>
<xs:element name="presenceMessaging' type="xs:boolean'/>
<xs:element name="drm" type="drmType'" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="remote_diagnostics" type="'xs:boolean'/>
<xs:element name="pollingNotifications" type='"xs:boolean" />
<xs:element name="mdtf" type=''xs:boolean'/>
<xs:element name="widgets" type="xs:boolean"/>
<xs:element name="html5_media" type="xs:boolean"/>
<xs:element name="remoteControlFunction" type='"'xs:boolean'/>
<xs:element name="wakeupApplication' type="xs:boolean"/>
<xs:element name="wakeupOITF" type="xs:boolean"/>
<xs:element name="hibernateMode™ type="'xs:boolean'/>
<xs:element name="telephony_services" type="telephonyServicesType'/>
<xs:element name="playbackControl" type="playbackType'/>
<xs:element name="temporalClipping" type="hasCapability"/>
<Xs:any namespace="##other" />
</xs:choice>
</xs:extension>
</xs:complexContent>
s:complexType>
- Redefined downloadType to add attribute manageDownloads -->
complexType name="downloadType'>
<xs:simpleContent>
<xs:extension base="downloadType'>
<xs:attribute name="manageDownloads' type="manageDownloadsType" default="none'/>
</xs:extension>
</xs:simpleContent>
s:complexType>
- Redefined audioProfileType to add attribute DRMSystemID -->
complexType name="audioProfileType'>
<xs:complexContent>
<xs:extension base="audioProfileType'>
<xs:attribute name="DRMSystemlID" type='"'xs:string'/>
</xs:extension>
</xs:complexContent>
s:complexType>
- Redefined videoProfileType to add attribute DRMSystemID -->
complexType name="videoProfileType'>
<xs:complexContent>
<xs:extension base="videoProfileType'>
<xs:attribute name="DRMSystemID" type='"xs:string'/>
</xs:extension>
</xs:complexContent>
s:complexType>
s:redefine>
- ADDED: type definitions for the new elements defined in Section 9.3 of the

5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 381 (415)

Open IPTV forum V
-
<xs:simpleType name="m
<xs:restriction bas
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration
<Xs:enumeration

olume 5 Declarative Application Environment Release 2 specification

anageDownloadsType''>
e=""xs:string">
value=""none"/>
value="initiator"/>
value="'samedomain/>
value="all""/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="manageRecordingsType''>
<xs:restriction base='"xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="iInitiator"/>
<xs:enumeration value="samedomain'/>
<xs:enumeration value="all"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="videoBroadcastType"'>
<xs:attribute name=""type" type="xs:string" use="required'/>
<xs:attribute name="transport"'” type="xs:string"/>
<xs:attribute name="'nrstreams' type="xs:unsignedInt" default="1"/>
<xs:attribute name="'scaling" type="'scalingType" default="arbitrary"/>
<xs:attribute name="minSize" type="'xs:unsignedint" default="0"/>
<xs:attribute name="postList" type="xs:boolean" default="false'/>
<xs:attribute name="networkTimeshift" type="'xs:boolean" default="false'/>
<xs:attribute name="localTimeshift" type='xs:boolean" default="false"/>
</xs:complexType>
<xs:complexType name="pvrType'>
<xs:simpleContent>
<xs:extension base="xs:boolean">

<xs:attribute
<xs:attribute
<xs:attribute
<xs:attribute
<xs:attribute

name=""ipBroadcast" type="'xs:boolean" default="false'/>

name=""HAS" type="'xs:boolean" default="false'/>

name="DASH" type="xs:boolean" default="false"/>
name=""manageRecordings' type="manageRecordingsType" default="none"/>
name=""postList" type="xs:boolean" default="false"/>

</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="parentalControlType'>
<xs:simpleContent>
<xs:extension base="xs:boolean'>
<xs:attribute name="'schemes" type=''xs:string'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="metadataType''>
<xs:simpleContent>
<xs:extension base="xs:boolean'>
<xs:attribute name=""type" type="'xs:string'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="drmType''>
<xs:simpleContent>
<xs:extension base="xs:string'">
<xs:attribute name="DRMSystemID" type="'xs:string" use="required'/>
<xs:attribute name="protectionGateways" type='xs:string" default=""/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="telephonyServicesType">
<xs:simpleContent>
<xs:extension base="'xs:boolean'>
<xs:attribute name="video" type="xs:boolean' default="false"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="playbackType">
<xs:simpleContent>
<xs:extension base="'xs:boolean">
<xs:attribute name=""type" type="'xs:string'/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="hasCapability"/>
</xs:schema>

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 382 (415)

Due to limitations of XML Schema it is not possible to redefine/extend the enumeration of type “scalingType” to add the
additional value “0.33x0.33” as defined in section 9.3.15. Therefore, this value must be directly added to the original
schema as defined in annex C of [CEA-2014-A] (i.e. imports/ce-html-profiles-1-0.xsd), as follows:

L---1

<xs:simpleType name="scalingType'>
<xs:restriction base='"'xs:string">
<xs:enumeration value="arbitrary"/>
<xs:enumeration value="quartersize'/>
<xs:enumeration value="none"/>
<xs:enumeration value="0.33x0.33"/>
</xs:restriction>
</xs:simpleType>

L---1

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 383 (415)

Annex G. Client Channel Listing Format

An OITF that supports sending the Client Channel Listing through the HTTP POST method defined in section 4.8.1.2
SHALL adhere to the XML Schema of the Client Channel Listing defined in this annex for which the following
semantics apply:

1. <ChannelConfig> - mandatory root element of the Client Channel Listing.

2. <ChannelList> - mandatory container element for zero or more <Channel> elements, the order of which
corresponds to the channel order as managed by the OITF.

3. <Channel> - element that represents a channel that can be received by a tuner of the OITF. The element has the
following attributes:

a. Mandatory attribute “ccid” which specifies a unique identifier of the channel within the scope of the OITF.
The format of ccid SHALL have a prefix ‘ccid:’, e.g., ‘ccid:{tuner.}majorChannel{.minorChannel}’. The
ccid is defined and managed by the OITF.

b. Optional attribute “channe I Type” which indicates the type of media content carried over the channel. Valid
values are specified in section 7.13.11.1. If not included, the default value is “TYPE_OTHER”.

c. Mandatory attribute “idType” which specifies the type of identification that is used for the channel. Valid
values are specified in section 7.13.11.1.

d. Optional attribute “tuner 1D” which specifies a unique identifier of the tuner within the scope of the OITF.

4. <ONID> - mandatory child element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies the
DVB or ISDB original network ID. The value can be empty (i.e. <ONID/>) if stream does not contain an
SDT_Actual.

5. <TSID> - mandatory child element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies the
DVB or ISDB transport stream ID.

6. <SID> - mandatory element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies the DVB or
ISDB service ID.

7. <SourcelD> - mandatory child element of a <Channel> element of type ID_ATSC_T which specifies the ATSC
source_ID.

8. <Freg> - mandatory child element of a <Channel> element of type “ID_ANALOG” which specifies the frequency
of the content carrier in kHz.

9. <CNI> - optional child element of a <Channel> element of type “ID_ANALOG” which specifies the VPS/PDC
confirmed network identifier.

10. <IPBroadcastIlD> - mandatory child element of a <Channel> element of type “ID_IPTV_SDS” or “ID_IPTV_URI”.
if the channel has type “ID_IPTV_SDS”, this element denotes the DVB Textual Service Identifier of the IP
broadcast service, specified in the format “ServiceName.DomainName” with the ServiceName and DomainName as
defined in
TS 102 034 V1.3.1. If the channel has type “ID_IPTV_URI”, this element denotes the URI of the IP broadcast
service.

11. <MajorChannel>> - optional child element of a <Channel> element of type “ID_ATSC_*”. This element denotes
the major channel number, if assigned. Value 0 otherwise.

12. <MinorChannel> optional child element of a <Channel> element of type “ID_ATSC_*”. This element denotes the
minor channel number (in relation to the major channel number as indicated through element <MajorChannel>) if
assigned. Value 0 otherwise.

13. <Name> - mandatory child element of a <Channel> element which specifies the name of the broadcaster. May be an
empty string.

14. <Favourite> - optional child element of a <Channel> element indicating that the user has marked this channel as a
favourite. The element has the following attribute:

a. Optional attribute “Fav IDS” indicating in which favourite lists, if any, this channel is selected.

15. <FavouriteLists> - optional child element of the <ChannelConfig> element containing one or more <FavouriteList>
elements.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 384 (415)

16. <FavouriteList> - mandatory child element of the <FavouriteLists> element that represents a favourite list that is
(partially) managed by the OITF. The element has the following attribute:

a. Mandatory attribute “Fav 1D” which specifies the unique identifier of the favourite list.
17. <FavName> - mandatory child element of the <FavouriteList> element specifying the name of the favourite list.

18. <CurrentFavouriteList> - conditionally optional child element of the <ChannelConfig> element specifying the
currently active favourite list.

19. <Recordable> - optional child element of a <Channel> element indicating whether the channel can be recorded.
Valid values include “True” or “False”. If this element is not included, the default value is “False”. The value
SHALL be ignored if the OITF did not indicate support for control of its recording functionality.

20. <Locked> - optional child element of a <Channel> element indicating whether the current state of the parental
control system prevents the channel from being viewed (e.g. a correct parental control pin has not been entered).
Valid values include “True” or “False”. If this element is not included, the default value is “False”.

21. <ManualBlock> - optional child element of a <Channel> element indicating whether the user has manually blocked
viewing of this channel. Manual blocking of a channel treats the channel as if its parental rating value always
exceeded the system threshold. Valid values include “True” or “False”. If this element is not included, the default
value is “False”.

A valid Client Channel Listing SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding=""UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name=""ChannelConfig'>
<xs:complexType>
<xs:sequence>
<xs:element ref="ChannelList"/>
<xs:sequence minOccurs="0">
<xs:element ref="FavouritelLists"/>
<xs:element ref="CurrentFavouriteList" minOccurs="0"/>
</xs:sequence>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ChannelList'>
<xs:complexType>
<XS:sequence>
<xs:element ref="Channel"™ minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Channel"'>
<xs:annotation>
<xs:documentation>
For a DVB digital channel use ONID+TSID+SID,
for an I1SDB (ARIB) digital channel use ONID+TSID+SID,
for a ATSC terrestrial channel use SourcelD,
for analog channel use Freq and CNI (if available).
The IPBroadcastlD element is relevant for IPTV broadcasts, as defined in Section 7.5.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<XS:sequence>
<xs:choice>
<Xs:sequence>
<xs:element ref="ONID"/>
<xs:element ref="TSID"/>
<xs:element ref="SID"/>
</Xs:sequence>
<xs:element ref="SourcelD"/>
<Xs:seguence>
<xs:element ref="Freq'/>
<xs:element ref="CNI" minOccurs="0"/>
</Xs:sequence>
<xs:element ref="I1PBroadcastiD"/>
</xs:choice>
<xs:element ref=""Name"/>
<xs:element ref="Favourite" minOccurs="0"/>
<xs:element ref="Recordable'" minOccurs="0"/>
<xs:element ref="Locked™ minOccurs="0"/>
<xs:element ref="ManualBlock"™ minOccurs="0"/>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 385 (415)

</Xs:sequence>
<xs:attribute name="CCID" type="'xs:IDREF" use="required'/>
<xs:attribute name="'channelType" type='"'xs:string" default="TYPE_OTHER"/>
<xs:attribute name=""idType" type=''Xs:string" use="required"/>
<xs:attribute name="TunerID" type="'xs:IDREF" use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="ONID" type='Xxs:integer'/>
<xs:element name="TSID" type='xs:integer'/>
<xs:element name="SID" type='Xxs:integer'/>
<xs:element name="SourcelD" type='"'xs:integer'/>
<xs:element name="Freq" type='"xs:integer'/>
<xs:element name="CNI" type='"xs:integer'/>
<xs:element name=""1PBroadcastID" type="'xs:string'/>
<xs:element name=""MajorChannel' type="xs:integer'/>
<xs:element name=""MinorChannel" type="'xs:integer'/>
<xs:element name=""Name" type=''xs:string'/>
<xs:element name="Favourite'>
<xs:complexType>
<xs:attribute name="FavIDS" type='xs:IDREFS"/>
</xs:complexType>
</xs:element>
<xs:element name="FavouriteLists">
<xs:complexType>
<Xs:sequence>
<xs:element ref="FavouriteList" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="FavouriteList'>
<xs:complexType>
<xs:complexContent>
<xs:extension base="FavName'>
<xs:attribute name="FavID" type='"xs:ID" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:complexType name="FavName"'>
<xs:sequence>
<xs:element ref="FavName'/>
</Xs:sequence>
</xs:complexType>
<xs:element name="FavName' type="xs:string"/>
<xs:element name="CurrentFavouriteList">
<xs:complexType>
<xs:attribute name="FavID" type="xs:IDREF" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name=""Recordable" type="xs:boolean"/>
<xs:element name="Locked" type="xs:boolean"/>
<xs:element name="ManualBlock" type='"xs:boolean'/>
</xs:schema>

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 386 (415)

Annex H. Display Model

H.1 Logical plane model

Digital TV terminals typically have multiple planes for displaying graphics, subtitles, video and background color. This
section defines a logical plane model for OITFs. Figure 18 shows the ordering of these logical planes.

Background color plane
(black)

Video plane

Subtitles plane

DAE application graphic
plane

Platform-specific application
graphic plane

Figure 18: Logical plane model (informative)

This logical plane model does not imply any particular physical implementation. For instance, the presence of two
graphic planes and a subtitle plane does not imply a requirement for three hardware graphic planes.

The logical planes are defined as follows:

= The “Background color plane” displays a single uniform color which SHALL be black. This plane SHALL be at
the bottom of the logical display stack.

= The “Video plane” is used to display video. This plane SHALL be on top of the background color plane in the
logical display stack. The interaction between the “video plane” and the video/broadcast object is described in
section 10.1.2. Streamed video may appear to be presented in a plane other than the logical video plane. The
present document is intentionally silent about the mechanism used by an OITF to achieve this behaviour

= The “Subtitles plane” is used to display subtitles. This plane SHALL be on top of the video plane in the logical
display stack.

= The “DAE application graphic plane” is used to display any running DAE applications. This plane SHALL be
on top of the subtitles plane in the logical display stack. The logical resolution of this plane is given by the
<width> and <height> elements of the capability description. The default background color of the browser
rendering canvas (as defined in section 2.3.1 of CSS2.1) is terminal specific. Applications should explicitly set
the background of their <body> element to transparent using (for example) the background-color CSS rule
or any equivalent construct.

= The “Platform-specific application graphic plane” is used to display applications specific to the OITF such as
native system menus, banners or pop-ups. This plane SHALL be on top of the DAE application graphic plane in
the logical display stack.

For subtitles, the following rules apply:

= OITFs SHOULD support simultaneous display of application and subtitles. In that case, the OITF SHALL
display the application over the subtitles (as shown in Figure 18). If the video is rescaled, the subtitles SHALL
be rescaled/repositioned appropriately or not displayed at all.

= If the presentation of subtitles is requested prior to the launch of an application, then OITFs which cannot
support simultaneous display of applications and subtitles SHALL display subtitles in preference to running the
application. The OITF MAY offer the end-user the opportunity to disable subtitles and run the application
instead.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 387 (415)

= |f the presentation of subtitles is requested while an application is running, OITFs which cannot support
simultaneous display of applications and subtitles SHALL display applications in preference to the presentation
of subtitles.

NOTE: In consequence, display of subtitles with broadband delivered video is only possible on such terminals by
including the subtitles as part of the video.

H.2 Interaction with the video/broadcast and A/V Control
objects

The behaviour of the video/broadcast object is defined in section 7.13.1.1. When no video/broadcast object is
instantiated, or when all video/broadcast objects are in the Unrealized state, broadcast video presentation SHALL be
under the control of the OITF. When video is under the control of the OITF:

= Any broadcast video being presented SHALL be displayed in the logical video plane.
= The complete logical video plane SHALL be filled.
= The OITF MAY scale and/or position video, for example to remove black bars.

For broadcast related applications as defined in section 5.2.3, broadcast video presentation SHALL initially be under the
control of the OITF. Applications wanting to control video presentation SHALL create a video/broadcast object.

When a video/broadcast object is in any state other than the Unrealized state, broadcast video presentation SHALL be
under the control of the application. When video is under the control of the application:

= When the video/broadcast object or A/V Control object is not in “full-screen mode”, any video being presented
SHALL be scaled and positioned in the following way:

o if the video/broadcast object has the same aspect ratio as the video the four corners of the video
SHALL match exactly the corners of the video/broadcast object

0 otherwise the video SHALL be scaled such that one side of the video fills the video/broadcast object
fully without cropping the picture. The aspect ratio SHALL be preserved. Along the side where the
video is shorter than the video/broadcast object, the video SHALL be centered. The area of the video
plane not containing video SHALL be opaque black.

= When the video/broadcast object or A/V Control object is in “full-screen mode”, presented video SHALL be
scaled to fill the entire logical video plane. The OITF MAY further scale and/or position video, for example to
remove black bars.

= Depending on the Z index of the video/broadcast or A/V Control object with respect to other HTML elements
(regardless of whether the object is in “fullscreen mode” or not), presented opaque video may fully or partially
overlap other HTML elements with a lower Z index, and may in turn be fully or partially overlapped by HTML
elements with a higher Z index. As a result of this, video may appear to be presented in a plane other than the
logical video plane. This specification is intentionally silent about the mechanism used by an OITF to achieve
this behaviour.

= Calling the Application.hide() method SHALL cause video (and any subtitles) being presented under the
control of that application to be hidden, and any audio being presented by the video/broadcast or A/V Control
object under the control of that application to be muted. Calling Application.show() SHALL cause video
and audio presentation to be restored.

If the release() method is called on a video/broadcast object, or if the object is garbage collected, control of broadcast
video presentation SHALL be returned to the OITF and video SHALL be re-scaled and re-positioned (if necessary).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 38

8 (415)

H.3 Graphic safe area (informative)

Figure 19 shows the recommended safe area for content authoring for the OITF_HD_UIPROF default profile:

16:9 —
full image

H Pixel 640

| Voe ntre

centre’

5%
safe areg == =

10% of 16:9 image ——

: Pixel 360

I 1024 pixels

, 1280 pixels

Figure 19: Gra

phic safe area

H.4 Current Channel (informative)

There are 3 different “current channel” concepts in this specification;

648 pixels

720 pixels

= The current channel of an OITF. This is the most obvious “current channel” to the end-user but the most
complex to properly define technically — particularly where more than one channel is being presented at the
same time. The bindToCurrentChannel () method implicitly defines this as this the channel whose audio is

being presented.

= The current channel of a video/broadcast object. This is the easiest to define technically.

= The current channel of a broadcast-related application. This is the channel which is currently the source of the
signalling information controlling the lifecycle of a broadcast-related application (as described in section 5.2.3).

In simple situations, all of these may refer to the same channel. In complex situations they may not. Here are some

examples;

Table 18: Clarification of the “current channel” concept in different scenarios

Scenario Current Channel Current
of the OITF Channel of
video
/broadcast
object(s)

Current
channel of
broadcast-

related

application(s)

The OITF is presenting exactly one

broadcast video channel, this video is channel.

being presented by a video/broadcast
object (in the Presenting state) which is
part of a broadcast-related application
which is controlled by signalling
information from that broadcast video
channel

All 3 current channels reference the same broadcast

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 389 (415)

The OITF is presenting exactly one
broadcast video channel, this video is
under the control of the OITF (as defined
in section H.2) and one or more broadcast-
related applications are running which are
controlled by signalling information from
that broadcast video channel none of
which have a video/broadcast object
outside the Unrealized state.

The channel being
presented by the
OITF

Not relevant

The channel
being
presented by
the OITF

The OITF is presenting exactly one
broadcast video channel, this video is
under the control of the OITF (as defined
in section H.2) and no broadcast-related
applications are running.

The channel being
presented by the
OITF

Not relevant

Not relevant

The OITF is presenting two broadcast The main channel Not Not relevant.
video channels, one main channel (the one relevant.
(responding to channel up and channel responding to
down) and a PiP channel. channel up /
channel down)
The OITF is presenting two broadcast The channel which Not This
video channels, one main channel was previously relevant. specification
(responding to channel up and channel PiP. does not
down) and a PiP channel. A broadcast- address what
related application is running associated happens to
with the main channel. The user swaps the broadcast-
main channel to PiP and vice-versa. related
applications
under these
circumstances.
A broadcast-independent or service The same as the The two Not relevant.
provider related DAE application has two current channel of video/bro
video/broadcast objects, one the adcast
presenting the channel resulting from a video/broadcas objects
call to bindToCurrentChannel() and the t object have
second presenting another channel set by presenting the different
setChannel(). channel resulting current
from a call to channels.
bindToCurrentCha
nnel()

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 390 (415)

Annex 1. Backwards Compatible Profile of HTML5 Media Elements

.1 Introduction

This annex lists the media related elements and types from the HTMLS5 specification as referenced by
[OIPF_DAE2_WEB] (sections 4.8.6 through to 4.8.10) and defines a set of attributes, methods and constants which are
common between the 2009-08-25 version of the HTMLS5 specification and the candidate recommendation. Attributes,
methods, constants and elements which are included in one specification but not the other are recorded in informative
notes. Attributes, methods, constants and elements which were included in the 2009-08-25 version and are not included
in the candidate recommendation are not REQUIRED by this annex but MAY be included unless they conflict with
something in the candidate recommendation.

NOTE: The track element was not included in the 2009-08-25 version and is not included here.

.2 Video Element

Content attributes included from this interface: src, poster, preload, autoplay, loop, controls, width,
height

NOTE: The autobuffer content attribute from the 2009-08-25 version is not included in the candidate
recommendation and hence is not required here.

NOTE: The crossorigin, mediagroup and muted content attributes in the candidate recommendation were not
included in the 2009-08-25 version and are not included here.

DOM attributes included from this interface: width, height, poster, videoWidth, videoHeight
DOM methods included from this interface: none

DOM constructors included from this interface: none

DOM constants included from this interface: none

In addition, DOM attributes, methods and constants are inherited from the media element.

.3 Audio Element

Content attributes included from this interface: src, preload, autoplay, loop, controls

NOTE: The autobuffer content attribute from the 2009-08-25 version is not included in the candidate
recommendation and hence is not required here.

NOTE: The crossorigin, mediagroup and muted content attributes in the candidate recommendation were not
included in the 2009-08-25 version and are not included here.

DOM attributes included from this interface: none

DOM methods included from this interface: none

DOM constructors included from this interface: Audio()

NOTE: The constructor Audio(in DOMString src) isnot included as it is not widely implemented.
DOM constants include from this interface: none

In addition, DOM attributes, methods and constants are inherited from the media element.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 391 (415)

.4 Source Element

Content attributes included from this interface: src, type, media
DOM attributes included from this interface: src, type, media
DOM methods included from this interface: none

DOM constructors included from this interface: none

DOM constants included from this interface: none

.5 Media Element

Content attributes included from this interface: none

DOM attributes included from this interface: error, src, currentSrc, networkState, autobuffer,
buffered, readyState, seeking, currentTime, startTime, duration, paused, defaul tPlaybackRate,
playbackRate, played, seekable, ended, autoplay, loop, controls, volume, muted and preload.

NOTE: The crossOrigin, startDate, mediaGroup, controller, audioTracks, videoTracks and
textTracks attributes were not included in the 2009-08-25 version and are not included here.

NOTE: The autobuffer and startTime attributes from the 2009-08-25 version are not included in the candidate
recommendation and hence are not required here.

DOM methods included from this interface: load(), canPlayType(in DOMString type), play(), pause()
NOTE: The addTextTrack method was not included in the 2009-08-25 version and is not included here.
DOM constructors included from this interface: none

DOM constants included from this interface: NETWORK_EMPTY, NETWORK _IDLE, NETWORK_LOADING,

NETWORK_NO_SOURCE, HAVE_NOTHING, HAVE_METADATA, HAVE_CURRENT DATA, HAVE_FUTURE_DATA,
HAVE_ENOUGH_DATA

NOTE: The NETWORK_LOADED constant is not included in the candidate recommendation and hence is not included
here. The numeric value assigned for NETWORK_LOADED in the 2009-08-25 version has been re-used for
NETWORK_NO_SOURCE in the candidate recommendation — a conflict that prevents NETWORK_LOADED from being
OPTIONAL in this annex.

Events included from this interface: loadstart, progress, suspend, abort, error, emptied,
loadedmetadata, loadeddata, canplay, canplaythrough, playing, waiting, seeking, seeked, ended,
timeupdate, durationchange, ratechange, volumechange, play and pause.

NOTE: The load and loadend events are not included in the candidate recommendation and hence are not included
here.

NOTE: The stal led event is not included due to not being widely implemented.

.6 Other object types

Types included as specified: MediaError, TimeRanges

NOTE: The AudioTrack, AudioTrackList, VideoTrack, VideoTrackList, MediaController,
TextTrack, TextTrackList, TextTrackCue, TextTrackCuelList interfaces were not included in the 2009-08-
25 version and are not included here.

.7 Dependencies

Where methods, attributes, constants and behaviour included from the HTMLS5 specification refers to other W3C
specifications, (e.g. DOM4), that reference is OPTIONAL. Implementations MAY use that reference or any equivalent
reference which works and is technically coherent.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 392 (415)

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 393 (415)

Annex J. DLNA RUI Remote Control Function Sequences

J.1 Remote Ul and box models (informative)

The architecture overview from section 4.1 of [CEA-2014-A] defines various box models. Next to the i-Box model for
accessing IPTV service providers or 3rd party internet services, it defines a 2-Box and 3-box model for in-home remote
Ul. Box Models are divided by not only where the server resides but also where the Ul control point reside to perform
discovery and setup of a remote Ul connection. In case of the 2-Box and 3-box model the Ul control point is a UPnP
control point that discovers in-home servers. In case of the 2-box model, there is a UPnP Remote Ul control point inside
the OITF. If the UPnP remote Ul control point resides in an external device (e.g. web pad, remote controller), whereby
the external device lists the Remote Ul servers and sets up a Ul connection between the OITF and Remote Ul Server this
is called the 3-box model. An OITF that supports the 3-box model must be discoverable through UPnP itself, and expose
the profile information of a Remote Ul client to the home network.

For the OITF, only the CEA-2014-A i-Box model is mandatory. The 2-box and 3-box models are optional. The default
interaction with the Application Gateway (AG), the IMS Gateway (I1G) and the CSP gateway (CSPG) deviate in the
following manner. However, it is not precluded for an AG, IG, CSPG or other devices in the home network to expose
themselves as a regular UPnP Remote Ul server that is compliant with CEA-2014, for example to serve a Remote Ul of
its configuration screen to the OITF.

= The AG is similar to a level 1 remote Ul server as defined in section 5.1.1.2 of [CEA-2014-A], with the
difference that [Req. 5.1.1.2.d] is replaced with a different device description. The device description of the AG
is defined in section 10.1.1.2 of [OIPF_PROT2]. The requirements [Reqg. 5.1.1.2.b] and [Req. 5.1.1.2.c] are now
optional: a URL to the XML UI Listing is provided by element <agUIServerURL> of the AG Description XML
document. Note that the UPnP Device description of the AG MAY offer a CEA-2014-A compatible level 1 or
level 2 remote Ul server in its UPNP device hierarchy that point to the same XML Ul listing.

= The IG enables the discovery of IPTV services through the HNI-IGI interface as defined in [OIPF_PROT?2].
This is quite different from a level 1 or level 2 remote Ul server. The details of the device discovery of the IG
are defined in section 10.1.1.1 of [OIPF_PROT?2].

Irrespective of the box models, and the discovery mechanism used, the OITF performs the following general steps to set
up a connection to any internet or in-home service:

1. Setup & Connect phase:

a) The OITF connects to a URL of a DAE application offered by a server over an HTTP connection. The
capability profile of an OITF is conveyed to the server, using the “User-Agent” HTTP header, to enable
the server to adjust the contents to the DAE capabilities of the OITF. An OITF that supports additional
content formats (e.g. Flash) can also convey these extensions to the server.

b) After setting up the connection, the XHTML and/or SVG contents that constitute the DAE application
are downloaded to the OITF.

c) This connection can also be set up by a separate Ul Control Point in case of an OITF that supports a 3-
box model.

2. Presenting web content:

a) After downloading the XHTML and/or SVG contents, the DAE application may become active and
display a user interface as defined by the XHTML and/or SVG contents.

3. Controlling the UI:

a) Remote control, keyboard and mouse events can be handled within scripts.

b) Native control for web forms and spatial navigation must be supported.

c) Client-side scripting control for the playback of A/V content must be supported.
4. Dynamic Ul Updates:

a) User interfaces can be dynamically updated by the server using a persistent TCP connection
(NotifSocket) or through XML updates over an HTTP connection (AJAX).

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 394 (415)

5. 3" Party Notifications:

a) Notification messages linked to Ul content can arrive on the OITF outside of an active Ul interaction
between the OITF and the server.

J.1.1 i-Box model

The i-Box Model supports the remote presentation and control of Uls that reside on a server on the Internet (WAN). The
client (OITF) resides within the home domain, and is either non-discoverable and has a built-in “Connection setup and
control” to perform connection management related operations, or is discoverable by an external so called Ul Control
Point within the home domain that allow the connection management related operations to be controlled by another
device. This configuration is depicted in the diagram below.

OITF/DAE Remote Ul Server

(Non-Discoverable or (Internet)
Discoverable)

optional

| Connection ! e mmean :
! Setupand | ! Ul Control !
B R 5 Point W e T e B

Figure 20: i-Box Model

J.1.2 2-Box model

The 2-Box Model describes a configuration in which the server is discoverable in the home network. Since the client is
not discoverable, it must have a Ul Control Point in order to be functional in the network to be able to discover an AG
device description (as defined in section 10 of [OIPF_PROT2]), or a Remote Ul server description as described in section
5.1 of [CEA-2014-A].

OITF/DAE Application
; Gateway (AG)
(Non Discoverable) < 5| andlor RUI Server
Ul Control (Discoverable)

Point

Figure 21: 2-Box Model

J.1.3 3-Box model

When both the Remote Ul Server and the Remote Ul Client are discoverable, the configuration can be described by the
3-Box Ul Model. This configuration has no restriction on the location of the Ul Control Point for the discovery and
connection management, as illustrated in the diagram below.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 395 (415)

J.2

Application Gateway

OITF/DAE (AG) and/or RUI
; Server
(Discoverable)
__________________ < > (Discoverable)
Ullgo_nirol E i Ul Control !
1 - i Ul Control ! Point 5
_____________ Point E

Figure 22: 3-box Model

DLNA RUI Remote Control Function Sequences

There are two cases to send the control Ul to the Remote Control Device:

First, when the DAE application is created (for example, when loaded in response to a request from the Remote
Control Device), the DAE application SHALL try to give a proper control Ul to the Remote Control Device
(Creating DAE app - finding the Remote Control Device handle = giving the control Ul). See Annex J.1.

The DAE application is launched in response to an HTTP request from an OITF control Ul being rendered in the
Remote Control Device. The DAE application checks the currentRemoteDeviceHandle property when it
has completed loading. If this property returns undefined, it means that the current DAE application wasn’t
launched by a Remote Control Device (but by some other means), whereas if this property returns a value (the
Remote Control Device handle), the DAE application knows that it must send its Control Ul to the Remote
Control Device.

This scenario is made based on section 10.6 of [OIPF_ARCH?2].

Second, when the DAE application is already running, the DAE application sends a control Ul in response to a
control Ul request (DAE app running = getting the CUI request event = giving the control Ul). See annex
J.2.2.

The DAE application is currently being executed in the OITF and during this time the Remote Control Device
requests the control Ul from it. In this case, the OITF generates the ReceiveRemoteMessage event to the
DAE application with type set to 0. Then the DAE application retrieves the control Ul from the IPTV
Applications server and returns it to the Remote Control Device.

Annex J.2.3 shows the message flow for sending and receiving messages between control Ul in the Remote Control
Device and the DAE application.

NOTE: Dotted lines in the diagrams below indicate internal operations.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 396 (415)

J.2.11 Launching a DAE application to obtain the Control Ul

Remote _Control OITF
Device
IPTV
DLNA RUIC DLNA RUIS RCF | DAE | DAE Applications
Plug-in | Browser | App p——
1. Activate——
\ DLNA RUIC
2. DLNA RUI
discovery & description
_ 3. Request & Response
OITF XML Ul Listing
4. Rendering
OITF XML Ul Listing
5. Choose
the OIPF CUI
| 6. Request & Response
the OIPF CUI .
7. Rendering
the OIPF CUI
8. Start
OIPF service
9. HTTH Request with capability (Usg[-Agent)
(/rcf/request_service) 10. Order to g¢xecute DAE App
11. Request
DAE App
2. Response|
DAE App
13. Executing
DAE App
14. opReceiveRemoteMegsage
—>event |
15. Request CUI
with capability] (X—-RCF-Use[-Agent)
16. Hesponse CUI
17| sendRemoteMessage
> method
P 18. Send CUI
19. Rendering
CUlI
[
20. Sending and receiving a message between the Remote Device and the DAE application
(See Annex 1.3)

The following is a brief description of the steps in the flow:
NOTE: The dotted line is an internal operation.
1. The user activates a DLNA RUIC function.

2. The DLNA RUIC discovers the DLNA RUIS in the OITF as defined in section 5.1 of [CEA-2014-A] , and the

DLNA RUIC and the DLNA RUIS perform capability profile matching using the mechanism defined in section
5.2 of [CEA-2014-A].

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 397 (415)

o 0 &~ w

~

10.
11.
12.
13.
14.

15.
16.
17.

18.

19.

20.

DLNA RUIC requests XML Ul Listing to DLNA RUIS, and gets it.
DLNA RUIC renders XML Ul Listing in its own screen.
The user chooses the OIPF CUI in the XML UI Listing.

DLNA RUIC requests the OIPF CUI and gets it. (This OIPF CUI could be made based on Open IPTV Forum
Metadata information)

DLNA RUIC renders the OIPF CUL.
The user starts OIPF service with the OIPF CUI which came from DLNA RUIS in the OITF.
NOTE: The steps from step 1 to step 8 conform to the normal DLNA RUI sequence.

The OIPF CUI in the DLNA RUIC sends the OIPF service HTTP Request with capability in the User-Agent to
DLNA RUIS. The OIPF service HTTP Request is vender specific URI to create DAE application.

DLNA RUIS orders the DAE Browser to execute the requested DAE application.
DAE Browser requests the DAE application.

IPTV Applications server sends the requested DAE application.

DAE Browser executes the DAE application.

When the DAE application is loaded, the OITF dispatches a Rece iveRemoteMessage event with type
CREATE_APP to the application/oipfRemoteControlFunction object in the DAE application.

The DAE application requests the CUI by using XMLHttpRequest object with capability of DLNA RUIC.
The IPTV Applications server sends the CUI.

The DAE application sends the CUI to the application/oipfRemoteControlFunction object by using
the sendRemoteMessage () method.

DLNA RUIS sends the content of the CUI CE-HTML document to DLAN RUIC through a HTTP Response
body.

DLNA RUIC renders the CUI. DLNA RUIC fetches resources (images/css/js) directly from the IPTV
application server.

DLNA RUIC sends a message to the DAE application and receive the response message.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 398 (415)

J.2.2 Obtaining the control Ul from a running DAE application

Remote Control

OITF
Device
IPTV
DLNA RUIC DLNA RUIS RCF | DAE | DAE Applications
Plug-in | Browser | App A
I

1. Executing
DAE App

2. ugeServerSideXMLUIL|sting
- method

-
%

3. Making a XML Ul Listing

4. Activate
DLNA RUIC

5. DLNA RUI
discovery & description

6. Request XML Ul Listing

| 7. Response XML Ul Listing

8. Rendering
XML Ul Listing

9. CUI Request with capability (UsertAgent)
(/rcf/request_cui) |

10. onReceiveRemoteMepsage
- event

11. Request CUL
with cagability (X-RCF-Use[-Agent)

12. Response CUI

13] sendRemoteMessdge
- method

A

14. Send CUI

15. Rendering
CuUl
[
16. Sending and receiving a message between the Remote Device and the DAE application
(See Annex 1.3)

The following is a brief description of the steps in the flow:
NOTE: The dotted line is an internal operation.
1. DAE application which has the application/oipfRemoteControlFunction object is being executed.

2. The Server Side XML Ul Listing is updated in the DLNA RUIS through the useServerSideXMLUIListing()
method.

3. DLNA RUIS compiles the XML Ul listing
4. The user activates a DLNA RUIC function.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 399 (415)

© © N o

11.

12.
13.

14.
15.

16.

The DLNA RUIC discovers the DLNA RUIS in the OITF as defined in section 5.1 of [CEA-2014-A] , and the
DLNA RUIC and the DLNA RUIS perform capability profile matching using the mechanism defined in section 5.2
of [CEA-2014-A].

DLNA RUIC requests XML Ul Listing to DLNA RUIS.
DLNA RUIS sends the Server side XML Ul Listing to the DLNA RUIC.
DLNA RUIC renders XML Ul Listing in its own screen.

When a user chooses one of the CUIs in the XML Ul Listing, DLNA RUIC sends the HTTP request message
(/rcf/request_cui) with the RUIC capability information in the User-Agent to DLNA RUIS to get the CUL.

. The application/oipfRemoteControlFunction object dispatches a ReceiveRemoteMessage event with

type REQUEST_CUI to the DAE application.

The DAE application requests the CUI using XMLHttpRequest object, including the capability description received
from the RUIC in the request.

The IPTV Applications server sends the CUI.

The DAE application sends the CUI to the application/oipfRemoteControlFunction object by using the
sendRemoteMessage () method.

DLNA RUIS sends the content of the CUI CE-HTML to DLAN RUIC (+RUIPL+) by using HTTP Response body

DLNA RUIC renders the CUI. DLNA RUIC fetches resources (images/css/js and any other HTML documents)
directly from the IPTV application server.

DLNA RUIC sends a message to the DAE application and receive the response message as described in Annex J.2.3.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 400 (415)

J.2.3 Sending and receiving messages between the Remote Control
Device and DAE application
Remote _Control OITF
Device

IPTV

RCF DAE DAE L
DLNA RUIC DLNA RUIS Plug-in | Browser | App Apzlécrsgrgns

1. Rendering
CUl

2. Send a message
(Ex: Click the button

in the CUI) 3. Send a message
(/rcf/request_msg)

4. onReceiveRemoteMegsage
—> Event

5. Handling a message

,,,,,,,,,,,,,,,,,,,,,,,,,,

Existing DAE API
(Ex: AV objegt)

6.[sendRemoteMessage
—> Method

7. Send a message

The following is a brief description of the steps in the flow:

1.
2.

DLNA RUIC renders the CUI.

User sends a message to the DAE application. For example, user clicks a button which could send a specific message
to the DAE application.

The CUI sends a message to the DLNA RUIS by using a pre-defined URL (/rcf/request_msg).

The application/oipfRemoteControlFunction object dispatches a ReceiveRemoteMessage event with
type REQUEST_MSG to the DAE application.

The DAE application handles the message received from the DLNA RUIC.

The DAE application sends a message to the application/oipfRemoteControlFunction object by using a
sendRemoteMessage () method.

DLNA RUIS sends a message to DLNA RUIC.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 401 (415)

Annex K. Collections

This document defines a number of JavaScript collections, used by APIs to return lists of objects from the OITF to
applications (e.g. lists of channels or EPG search results). Many of these collections have identical semantics, and so for
the sake of brevity, the following notation is used to define these collections.

Each collection is an instance of the Col lection< 7> parameterized class (see Annex K.1), and is defined in the
following way:

typedef Collection<Foo> FooCollection
typedef Collection<Bar> BarCollection

where Foo or Bar is the name of the class that may be stored in the collection. For example:

typedef Collection<String> StringCollection
typedef Collection<Channel> ChannelList

Collections defined in this way SHALL follow the semantics defined in Annex K.1, and may be extended with additional
properties and methods as necessary.

Collections defined in this way always represent snapshots of the state of the OITF at a given time. They are not updated
automatically if the state of the OITF changes. This means that different instances of a specific type of collection may
contain different values.

K.1 The Collection template

The Collection<T> class is a parameterized class whose instances are (possibly zero-length) collections of values of
type T. The properties and methods defined below SHALL be present on any instance of a Col lection<T7> class.
Instances of a Col lection< 7> class SHALL support the use of array notation to access objects in the collection.

Instances of a Col lection< 7> class SHALL be considered to be immutable, except by APIs defined on the collection.
Attempts to insert items into instances of a Col lection< 7> class using array notation SHALL fail.

K.1.1 Properties

readonly Integer length

The number of items in the collection

K.1.2 Methods

<7> item(Integer index)

Description Return the item at position index in the collection, or undefined if no item is present at that
position.
Arguments index The index of the item that SHALL be returned

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 402 (415)

Annex L.

SVG Video Tag Support

This section provides a comparison between SVG <video> and the visual objects defined in this specification. When
not supported by SVG it is indicated with NS (Not Supported). When not in the scope of SVG it is indicated with NA
(Not Applicable). If there are differences in values or behaviour additional information is provided under the Comments

column.
A/V Control object Broadcast object SVG IDL Comments
attributes
General Number width Integer width Video element:
width attribute
Number height Integer height Video element:
height attribute
readonly Boolean fullScreen readonly Boolean fullScreen Video element:
viewbox
attribute
setFullScreen(Boolean void setFullScreen(Boolean Video element:
fullscreen) fullscreen) . .
viewbox attribute
focus() NS
Object onfocus function onfocus DOM2 Event
Model:
DOMFocusIn
Object onblur function onblur DOM2 Event
Model:
DOMFocusOut
Object onFullScreenChange function onFullScreenChange NS
Volume Boolean setVolume(Number Boolean setVolume(Integer Audio element: The range
volume) volume) audio-level specified in
attribute SVGis 0to
1.0 with 0
silencing the
audio.
Integer getVolume()
Components AVComponentCollection AVComponentCollection audioLanguage
(e.g. getComponents(Integer getComponents(Integer ='auto’ | <list-of-
subtitles componentType) componentType) language-ids>
languages)

subtitieLanguage
=‘auto’ | <list-of-
language-ids>

audioType =
‘auto’ | ‘normal’ |
‘descriptive’

subtitleType =
‘auto’ | ‘normal’ |
‘hearinglmpaired’
| ‘none’

teletextType =
‘auto’ | ‘normal’ |
‘none’

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 403 (415)

AVComponentCollection
getCurrentActiveComponents(
Integer componentType)

AVComponentCollection
getCurrentActiveComponents(
Integer componentType)

void selectComponent(
AVComponent component)

void selectComponent(
AVComponent component)

void unselectComponent(
AVComponent component)

void unselectComponent(
AVComponent component)

Broadcast function NA
specific onChannelChangeError(
Channel channel, Number
errorState)
Integer playState NA
function onPlayStateChange(NA
Number state, Number error)
Channel NA
bindToCurrentChannel()
void setChannel(Channel NA
channel, Boolean trickplay,
String
contentAccessDescriptorURL)
void prevChannel() NA
void nextChannel() NA
void release() NA
void setChannel(Channel NA
channel, Boolean trickplay,
String
contentAccessDescriptorURL,
Integer offset)
readonly Channel NA
currentChannel
Playback String data Video element:
control xlink:href
attribute
readonly Number playPosition readonly Integer playPosition NS
readonly Number playTime NS
readonly Number playState NS
readonly Number error
readonly Number speed readonly Number playSpeed NS

Boolean play(Number speed)

Boolean resume()

Boolean pause()

Media element:
pause/resume
attributes

SMIL: speed
attribute

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 404 (415)

Boolean setSpeed(Number
speed)

NA

Boolean stop ()

void stopRecording()

Media element:
end attribute

stopRecording is
NA

Boolean stopTimeshift()

NA

Boolean seek(Number pos)

Boolean seek(Integer offset,
Integer reference)

Media element:
begin attribute

Boolean next () NS
Boolean previous () NS
function function NS
onPlaySpeedChanged(onPlaySpeedChanged(
Number speed) Number speed)
script onPlayPositionChanged(function NS
Integer position) onPlayPositionChanged(
Integer position)
readonly Number playSpeeds[readonly Number playSpeeds][NS
]]
readonly String NA
oitfSourcelPAddress
readonly String NA
oitfSourcePortAddress
Boolean NA
oitfiNoRTSPSessionControl
String oitfRTSPSessionld NA
Recording String recordNow(Integer NA
specific duration)
readonly Integer NA
playbackOffset
readonly Integer maxOffset NA
readonly Integer NA
recordingState
function onRecordingEvent NA
readonly Integer state NA
readonly Integer error NA
readonly String recordingld NA

Volume 5 — Declarative Application Environment

Copyright 2014 © Open IPTV Forum e.V.

Page 405 (415)

Annex M. Multimedia Telephony sequences (Informative)

This section contains some examples of typical Multimedia Telephony sequences that involve a DAE Application and
the Multimedia Telephony API. All the sequences expect that the user is successfully registered to the network as a pre-
condition.

M.1 Full-duplex voice telephony call flow

After a registration procedure, performed through the registerUser method of the application/oipfCommunicationServices
object, a peer can generate an outgoing call or receive an incoming call:

= Incoming Call: Anincoming call is notified to the application through the onCal 1Event function with
appropriate parameters. The application can answer to an incoming call invoking the answer method with the
appropriate parameters identifying the specific action to be executed: accept, refuse, etc.

= Qutgoing Call: An outgoing call can be initiated by a peer invoking the cal I method with the URI of the
remote peer. The originating peer is notified about the state of the call by the onCal IEvent raised during the
progress (e.g.: ringing state) and the call result phases.

When a call session becomes active (i.e.: the media data are available) the function onCal 1Event will be invoked with
appropriate parameters. An active call can be closed by one of the peers at any time invoking the hangUp method. The
other peer will receive a notification of this operation through the function onCal 1Event with an hang-up specific
parameter. When the call session is closed the function onCal 1Event will be invoked again with a session end specific
parameter.

OITF OITF
DAE MM DAE MM
Telephony DAE MM DAE MM Telephony
Application Telephony API Telephony API Application
(Caller) (Callee)
1. call(...)

_ 2.ofCallEvent(EVENT_INCOMING_CALL)

3. orfCallEvent(EVENT_CALL_PROGRESS)

d

4. answer(ACCEPT)

. pnCallEvent(EVENT_CALL_RESULT)

4]

6. ofiCallEvent(EVENT_SESSION_START) 7. ofCallEvent(EVENT_SESSION_START)
Ll

8. hangUp(...)

9. onCallEvent(EVENT_HANGUP)

10.{onCallEvent(EVENT_SESSION_END) 11.JonCallEvent(EVENT_SESSION_END)
.l

The following is a brief description of the steps in the flow:
NOTE: This is just an example of a possible call flow.

1. A peer starts a call invoking the cal I method with the URI of the remote peer.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 406 (415)

2. The remote peer is notified about an incoming call through the onCal IEvent with event type
EVENT_INCOMING_CALL.

3. The peer is notified about the progress of his call request through the onCal IEvent function with event type
EVENT_CALL_PROGRESS.

4. The remote peer accepts the incoming call request invoking the answer method with ANSWER_ACCEPT
response parameter

5. The peer is notified about the result of his call request through the onCal IEvent function with event type
EVENT_CALL_RESULT and status equal to ACCEPT.

6. The peer is notified about the availability of the session and of the related media streams through the
onCal lIEvent function with event type EVENT_SESSION_START.

7. The remote peer is notified about the availability of the session and of the related media streams through the
onCal lIEvent function with event type EVENT_SESSION_START.

8. The peer closes the communication invoking the hangUp method.
9. The remote peer is notified through the onCal IEvent function with event type EVENT_HANGUP.

10. The peer receives a notification when the session is completely closed through the onCal 1Event function with
event type EVENT_SESSION_END.

11. The remote peer receives a notification when the session is completely closed through the onCal IEvent
function with event type EVENT_SESSION_END.

M.2 Full-duplex Video telephony call flow

A Video telephony call flow is basically derived from a Voice telephony call flow with few additions:

= The application/oipfCommunicationServices object, through the showLocalVideoPreview method, can
activate and deactivate the rendering of the local video captured by the selected video capture device to provide
a preview to the user. This method can be invoked before or after a call setup. The video stream is graphically
displayed by an A/V Control object as defined in section 7.14 or an HTMLS5 video element.

= When a call setup is successfully completed and a remote video stream is available, the application can invoke
the showRemoteVideo method, which renders the media and display it through an A/V Control object as
defined in section 7.14 or an HTMLS5 video element.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 407 (415)

OITF OITF
DAE MM DAE MM
Telephony DAE MM DAE MM Telephony
Application Telephony API Telephony API Application
(Caller) (Callee)

4. or|CallEvent(EVENT_CALL_PROGRESS) _____.--————""

1. showLocalVideoPreview(...)
Ll

2. call(...)

_____ 3.opCallEvent(EVENT_INCOMING_CALL)

5. answer(ACCEPT)

o

.bnCallEvent(EVENT_CALL_RESULT) -

7. showLocalVideoPreview(...)

8. ofCallEvent(EVENT_SESSION_START) 9. opCallEvent(EVENT_SESSION_START)
-
10. showRemoteVideo(...) 11. showRemoteVideo(...)
12. hangup(...) !

[L3. onCallEvent(EVENT_HANGUP|

14.JonCallEvent(EVENT_SESSION_END) 15.JonCallEvent(EVENT_SESSION_END)
<l

The following is a brief description of the steps in the flow:

NOTE: This is just an example of a possible call flow.

1.

10.

A peer activates a local video preview invoking the showLocalVideoPreview and passing the HTML ID of
the A/V Control object as defined in section 7.14 or HTMLS5 video element that will display the stream.

A peer starts a call invoking the cal I method with the URI of the remote peer.

The remote peer is notified about an incoming call through the onCal IEvent with event type
EVENT_INCOMING_CALL.

The peer is notified about the progress of his call request through the onCal 1Event function with event type
EVENT_CALL_PROGRESS.

The remote peer accepts the incoming call request invoking the answer method with ANSWER_ACCEPT
response parameter.

The peer is notified about the result of his call request through the onCal IEvent function with event type
EVENT_CALL_RESULT and status equal to ACCEPT.

The remote peer activates a local video preview invoking the showLocalVideoPreview and passing the
HTML ID of the A/V Control object as defined in section 7.14 or HTMLS5 video element that will display the
stream.

The peer is notified about the availability of the session and of the related media streams through the
onCal lIEvent function with event type EVENT_SESSION_START.

The remote peer is notified about the availability of the session and of the related media streams through the
onCal IEvent function with event type EVENT_SESSION_START.

The peer activates the remote video invoking the showRemoteVideo and passing the HTML ID of the A/V
Control object as defined in section 7.14 or HTML5 video element that will display the stream.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 408 (415)

11.

12.
13.
14.

15.

M.3

The remote peer activates the remote video invoking the showRemoteVideo and passing the HTML ID of the
AJV Control object as defined in section 7.14 or HTML5 video element that will display the stream.

The peer closes the communication invoking the hangUp method.
The remote peer is notified through the onCal IEvent function with event type EVENT_HANGUP.

The peer receives a notification when the session is completely closed through the onCal IEvent function with
event type EVENT_SESSION_END.

The remote peer receives a notification when the session is completely closed through the onCal 1IEvent
function with event type EVENT_SESSION_END.

Capture device and call parameters setting flow

The Multimedia Telephony API provides methods for enumerating the capture devices installed or connected to the
OITF, for selecting the devices that will be used during the call and to retrieve and set transmission parameter for the call.
The methods provide also support for muting or unmuting outgoing video or audio streams.

OITF OITF
DAE MM DAE MM
Telephony DAE MM DAE MM Telephony
Application Telephony API Telephony API Application
(Caller) (Callee)

1. getDevicelList(...)

2. setCaptureDevice(...)

3. setCaIIParameter(VIDEO_SIZ@

4. setCaIIParameter(VIDEOfFPﬂ

5. call(...)

6. ohCallEvent(EVENT_INCOMING_CALL)

7. orfCallEvent(EVENT_CALL_PROGR _SS)

Bl

8. answer(ACCEPT)

B)

pnCallEvent(EVENT_CALL_RESULT) »//»,,,,/—//””’////

©

10. showLocalVideoPreview(...)

11. dnCallEvent(EVENT_SESSION_START) 12. gnCallEvent(EVENT_SESSION_START)

d

13. showRemoteVideo(...) 14. showRemoteVideo(...)

13, setCallParameter(VIDEO_PAWYSE)

The following is a brief description of the relevant steps in the flow:

NOTE: This is just an example of a possible call flow. The descriptions of steps already described in previous sections
are omitted.

1.

2.

The application retrieves the list of capture devices for audio or video through the getDeviceList method.

The application sets the capture device to be used during the call for audio or video through the
setCaptureDevice method.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 409 (415)

3. The application sets the video size for the outgoing video stream through the setCal 1Parameter method
with the VIDEO_SIZE parameter.

4. The application sets the video framerate for the outgoing video stream through the setCal IParameter
method with the VIDEO_FPS parameter.

The description of the other steps is provided in the previous section.

15. During the call the application can mute the outgoing video stream by invoking the setCal IParameter
method with the VIDEO_PAUSE parameter.

M.4 Full-duplex Voice to Video telephony session update flow

The Multimedia Telephony API provides also support for updating a call adding or removing audio or video streams
from an ongoing session.

During a call one of the peers can decide to request the addition for example of video to the current audio-only session
through the cal IUpdate method. The other peer will receive a notification of this request through the onCal 1Event
event with a request specific parameter. The peer can then answer to this request invoking the cal lAnswerUpdate
method. The peer that originated the update request will be notified of the response through a onCal IEvent event with
a response specific parameter. When the updated call session becomes active (i.e. the media data are available) the
function onCal IEvent will be invoked with a session update specific parameter.

OITF OITF
DAE MM DAE MM
Telephony DAE MM DAE MM Telephony
Application Telephony API Telephony API Application
(Caller) (Callee)
1.0 EallEVent(EVENTﬁSESSIONisT/ RT) 2. opCallEvent(EVENT_SESSION_START)

3. callUpdate(...)

____4.onCallEvent(EVENT_INCOMING_UPIATE)

5. callAnswerUpdate(...)

-1

6. orfCallEvent(EVENT_UPDATE_RESPLT) -

7. OrCallEvent(EVENT_SESSION_UPOATE) 8. Or|CallEvent(EVENT_SESSION_UPQATE)
Ll

9. showRemoteVideo(...) 10. showRemoteVideo(...)

The following is a brief description of the steps in the flow:

NOTE: This is just an example of a possible call flow. The descriptions of steps already described in previous sections
are omitted.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 410 (415)

3. The peer requests an update of the current call session through the cal 1lUpdate method with the cal IType
parameter equal to AUDI0O_VIDEO.

4. The remote peer is notified through the onCal IEvent function with event type EVENT _INCOMING_UPDATE.

5. The remote peer accepts the incoming update request invoking the cal 1AnswerUpdate method with
UPDATE_ACCEPT response parameter.

6. The peer is notified about the result of his call request through the onCal IEvent function with event type
EVENT_SESSION_UPDATE and status equal to ACCEPT.

7. The peer is notified about the availability of the updated session and of the related media streams through the
onCal lIEvent function with event type EVENT_SESSION_UPDATE.

8. The remote peer is notified about the availability of the updated session and of the related media streams
through the onCal IEvent function with event type EVENT _SESSION_UPDATE.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 411 (415)

Annex N. Server root certificate selection policy (informative)

N.1 Introduction

This informative annex describes the policy that is adopted for the selection of root certificates for inclusion in terminals
compliant with this specification. A list of such certificates is published at http://www.oipf.tv/root-certificates.

N.2 Background

There are over 150 root certificates in web browsers at the time of publication.
= This list changes frequently over time.
= The larger the list of root certificates the more likely it is to change.
The security of TLS against man-in-the-middle attacks is dependent on the weakest root certificate trusted by a terminal.

The security of various key lengths changes with time as computing power increases. Specifically 1024 bit RSA keys are
no longer recommended for use.

Service providers need to know which root certificates are trusted by terminals to achieve interoperability. Service
providers are often not in control of the servers delivering their content (e.g. delivery via a CDN).

Service providers may also wish to make use of third party web services that are not under their control.

Maintaining an independent list of root certificates that are validated requires significant resources.

N.3 Policy

= The Mozilla list of approved root certificates has been selected as the authoritative source for the mandatory and
optional list of root certificates for inclusion in terminals compliant with this specification. This was chosen
because:

1. The approved root certificate list is publicly available.
2. The process for inclusion in the list is open.

3. Anyone can take part in the acceptance process.

4. The acceptance process itself happens in public.
5

Metadata is provided to differentiate root certificates for web server authentication, e-mail and code
signing,

6. The procedure for requesting a root certificate for inclusion in the list requires a test website be provided
which uses that certificate.

= The Mozilla list of approved root certificates is published on their website at
http://www.mozilla.org/projects/security/certs/. Each certificate marked as approved for web server
authentication is automatically an optional root certificate as specified in section 9.1.1.3.

= This specification will rely upon the Mozilla list for verifying the trustworthiness of Certificate Authorities.

= Alist of root certificates that are mandatory will be maintained which will be a subset of the certificates
specified above.

1. The list will be updated periodically.
2. The list will only include certificates that use algorithms mandated by section 9.1.1.2.

3. The mandatory list of certificates will be determined based on the requirements of service providers and
the Certificate Authorities that are in widespread use.

4. The list will be compiled relying upon published statistics to determine how widespread a Certificate
Authority is.

5. Certificate Authorities may be excluded from the mandatory list if they impose requirements that are
deemed unreasonable.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 412 (415)

6. Arevision history of changes to the mandatory list will be maintained and published.

This policy is subject to change.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 413 (415)

Annex O. Changes to section 5.6.2 of CEA-2014-A

= Support for this section SHALL be optional for an OITF. Support for section 5.6.2 SHALL be indicated through
the OITF’s capability description by using element <pollingNotifications> as defined in section 9.3.14.

= Extend requirement 5.6.2.a as follows

[Reg. 5.6.2.a] An i-Box Remote Ul Client SHALL support polling-based 3"-party notifications from an i-Box
server.

1. To manage the polling process for a particular notification, an i-Box Remote Ul Client SHALL support the
following method of the Window/UIContentFrame object:

Boolean subscribeToNotifications(String url, String name, Number period, String type)
where

= urlis the complete URL of the HTTP GET request made by the Remote Ul Client every
period seconds; the domain of url SHALL equal the domain of the current document in the
CE-HTML browser window, and use SSL or TLS security[24][9][10]; if it doesn’t, this
method has no effect and returns false. If url equals the URL of any existing notification
subscription and the value of period is positive, the name and period of that notification
subscription is updated.

= name is the user friendly name of the notification service.

= period is the polling period of this subscription in seconds. If the value of period equals 0, any
existing notification subscription with exactly the same URL is cancelled, and the return value
indicates the former existence of such a subscription. If the value of period is negative, no
changes are made and the return value indicates whether a subscription to the given URL
already exists. If the value of period is positive, true is returned only if the Remote Ul Client
subscribes, or updates an existing subscription.

= type is the highest priority event type that will be sent by the notification service, and SHALL
be one of the event types listed in bullet 10 of [Req 5.6.1.a], without the “upnp:”-prefix.

On executing the subscribeToNotifications method to subscribe to a new notification, the Remote Ul
Client SHALL alert the user to the impending new notification subscription (including information about
the highest priority notification type that will be sent by the Remote Ul Server), and provide the user with
at least two options:

= subscribe to this notification, and
= do not subscribe to this notification.
This does not exclude an option that allows a user to always accept notifications from the same URL.

If the Remote Ul Client does not subscribe because the user declined, the subscribeToNotifications
method SHALL return false.

2. To manage the polling process for a particular notification, an i-Box Remote Ul Client SHALL support the
following method of the Window/UIContentFrame object:

Number subscribeToNotificationsAsync(String url, String name, Number period, String type)

where

= urlis the complete URL of the HTTP GET request made by the Remote Ul Client every
period seconds. url SHALL have the same origin as the current document in the CE-HTML
browser window, and use SSL or TLS security [24][9][10]; if it doesn’t, this method has no
effect and an event indicating a negative response is dispatched. If url equals the URL of any
existing notification subscription and the value of period is positive, the name and period of
that notification subscription is updated.

= pame is the user friendly name of the notification service.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 414 (415)

= period is the polling period of this subscription in seconds. The value of period SHALL be
greater than zero.

= type is the highest priority event type that will be sent by the notification service, and SHALL
be one of the event types listed in bullet 9 of [Reqg 5.6.1.a], without the “upnp:”-prefix.

= The return value of his method indicated the ID of the subscription request. This is used when
notifying the application of the result of this call, to link a response to the request that

generated it.

On executing the subscribeToNotificationsAsync method to subscribe to a new notification, the Remote
Ul Client SHALL asynchronously alert the user to the impending new notification subscription (including
information about the highest priority notification type that will be sent by the Remote Ul Server), and
provide the user with at least two options:

= subscribe to this notification, and

= do not subscribe to this notification.

This does not exclude an option that allows a user to always accept notifications from the same URL.

Calls to subscribeToNotificationsAsync return immediately. The application will be notified via the
onNotificationSubscriptionResponse function (or corresponding DOM-2 event) user has chosen to
subscribe or to not subscribe to the notification.

If two calls to subscribeToNotificationsAsync with the same value for url overlap (i.e. the notification
event of the first call has not yet been dispatched), the Remote Ul Client SHALL interrupt the first call and
generate a response event as if the request had been declined.

3. An.i-Box Remote Ul Client SHALL support the following property of the Window/UIContentFrame
object:
script_onNotificationSubscriptionResponse

where the specified function is called with arguments id and response, which are defined as follows:

= Number id - the ID of the subscription request, as indicated by the return value of the
subscribeToNotificationsAsync method.

= Boolean response — the response indicating whether the subscription request has been
accepted. A value of false indicates that the request has been declined. A value of true
indicates that the request has been accepted.

4. Ani-Box Remote Ul Client SHALL support the following method of the Window/UIContentFrame object:

void unsubscribe(string url, string name)

where

= urlis the URL used to subscribe to a notification, which SHALL have the same origin as the
current document in the CE-HTML browser window

= pame is the user friendly name of the notification service.

On executing the unsubscribe method, the Remote Ul Client SHALL unsubscribe from the specified
notification service. If the application is not subscribed to the specified notification service or if the page
currently loaded in the CE-HTML browser window is not from the same origin as url, this method SHALL
have no effect. When this method returns, the application shall no longer be subscribed to the notification
service.

5. Ani-Box Remote Ul Client SHALL support the following method of the Window/U|ContentFrame object:

StringCollection listNotificationSubscriptions()

where the return value of this method SHALL be a collection of URLSs of notification services to which
HTML documents from the same origin are currently subscribed.

6. An.i-Box Remote Ul Client SHALL support the following method of the Window/U|ContentFrame object:

Boolean isSubscribed(string url, string name)

where

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

Page 415 (415)

= urlisthe URL used to subscribe to a notification, which SHALL have the same origin as the
current document in the CE-HTML browser window

= pame is the user friendly name of the notification service.

= The return value of this method SHALL be true if url has the same origin as the current
application and application is currently subscribed to the specified notification service, or false
otherwise.

Volume 5 — Declarative Application Environment Copyright 2014 © Open IPTV Forum e.V.

	Contents
	Figures
	Tables
	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Open IPTV Forum references
	2.3 Informative references

	3 Conventions and Terminology
	3.1 Conventions
	3.2 Terminology
	3.2.1 Definitions
	3.2.2 Abbreviations

	4 DAE overview
	4.1 Architecture of DAE
	4.2 Gateway discovery and control
	4.3 Application definition
	4.3.1 Similarities between applications and traditional web pages
	4.3.2 Differences between applications and traditional web pages
	4.3.3 The application tree
	4.3.4 The application display model
	4.3.4.1 Manipulating an application’s DOM Window object

	4.3.5 The security model
	4.3.6 Inheritance of permissions
	4.3.7 Privileged application APIs
	4.3.7.1 Compromising the security

	4.3.8 Active applications list
	4.3.9 Widgets
	4.3.10 Origin for Broadcast-delivered Documents

	4.4 Resource Management
	4.4.1 Application lifecycle issues
	4.4.2 Caching of application files
	4.4.3 Memory usage
	4.4.4 Instantiating embedded objects and claiming scarce system resources
	4.4.5 Media control
	4.4.6 Use of the display
	4.4.7 Cross-application event handling
	4.4.7.1 Behaviour of the BACK key

	4.4.8 Tuner resources

	4.5 Parental access control
	4.6 Content download
	4.6.1 Download manager
	4.6.2 Content Access Download Descriptor
	4.6.3 Triggering a download
	4.6.3.1 Using the registerDownload() method
	4.6.3.2 Using the registerDownloadURL() method
	4.6.3.3 Using the optional registerDownloadFromCRID() method
	4.6.3.4 General behaviour regarding triggering a download

	4.6.4 Download protocol(s)

	4.7 Streaming CoD
	4.7.1 Unicast streaming
	4.7.1.1 HTTP Adaptive Streaming
	4.7.1.2 Multicast streaming

	4.8 Scheduled content
	4.8.1 Conveyance of channel list
	4.8.1.1 Method 1: JavaScript method “getChannelConfig()”
	4.8.1.2 Method 2: HTTP POST message

	4.8.2 Conveyance of channel list and list of scheduled recordings

	4.9 DLNA RUI Remote Control Function
	4.9.1 Interfaces used by the DLNA RUI Remote Control Function

	4.10 Power Consumption
	4.10.1 DAE application wake-up support
	4.10.1.1 Single DAE application wakeup
	4.10.1.2 OITF wakeup

	4.10.2 OITF hibernate support
	4.10.3 State diagram for the power state

	4.11 Display Model

	5 DAE Application Model
	5.1 Application lifecycle
	5.1.1 Creating a new application
	5.1.1.1 General
	5.1.1.2 Broadcast-independent applications
	5.1.1.3 Applications started through an OITF-specific user interface
	5.1.1.4 Using the Application.createApplication() method
	5.1.1.5 CE-HTML third party notifications
	5.1.1.6 Starting applications from SD&S Signalling
	5.1.1.7 Applications started by the DRM agent
	5.1.1.8 Applications provided by the AG through the remote UI

	5.1.2 Stopping an application
	5.1.3 Application Boundaries

	5.2 Application announcement & signalling
	5.2.1 Introduction
	5.2.2 General
	5.2.3 Broadcast related applications
	5.2.3.1 General
	5.2.3.2 Stopping
	5.2.3.3 Procedure for starting and stopping broadcast related applications on channel change
	5.2.3.4 Procedure for starting and stopping broadcast related applications when signalling is updated

	5.2.4 Service provider related applications
	5.2.4.1 Signalling
	5.2.4.2 Starting
	5.2.4.3 Stopping

	5.2.5 Broadcast independent applications
	5.2.6 Switching between applications
	5.2.7 Signalling format
	5.2.7.1 XML Encoding
	5.2.7.2 MPEG-2 Encoding

	5.2.8 Widgets lifecycle
	5.2.8.1 Widget installation
	5.2.8.2 Widget execution
	5.2.8.3 Uninstalling a Widget
	5.2.8.4 Widget updates

	5.3 Event Notifications
	5.3.1 Event notification framework based on CEA 2014
	5.3.1.1 In-session event notification
	5.3.1.2 Out of session event notification

	5.3.2 IMS event notification framework
	5.3.2.1 HNI-IGI transactions for in-session out-going request messages
	5.3.2.2 HNI-IGI transaction for in-session incoming request messages
	5.3.2.3 HNI-IGI transaction for out of session incoming request messages

	6 Formats
	6.1 Web Standards TV Profile
	6.1.1 Additional restrictions and requirements

	6.2 Still image formats
	6.3 Media formats
	6.3.1 Media format of A/V media except for audio from memory
	6.3.2 Media format of A/V media for audio from memory
	6.3.3 Media transport

	6.4 SVG

	7 APIs
	7.1 Object factory API
	7.1.1 Methods
	7.1.1.1 Visual objects
	7.1.1.2 Non-Visual objects

	7.1.2 Examples

	7.2 Application Management APIs
	7.2.1 The application/oipfApplicationManager embedded object
	7.2.1.1 Constants
	7.2.1.2 Properties
	7.2.1.3 Methods
	7.2.1.4 Events

	7.2.2 The Application class
	7.2.2.1 Properties
	7.2.2.2 Methods

	7.2.3 The ApplicationCollection class
	7.2.4 The ApplicationPrivateData class
	7.2.4.1 Properties
	7.2.4.2 Methods

	7.2.5 The Keyset class
	7.2.5.1 Constants
	7.2.5.2 Properties
	7.2.5.3 Methods

	7.2.6 New DOM events for application support
	7.2.7 Examples (informative)
	7.2.7.1 Locating the Application object
	7.2.7.2 Creating a new application

	7.2.8 Widget APIs
	7.2.8.1 The WidgetDescriptor class
	7.2.8.1.1 Properties
	7.2.8.1.2 Clarifications

	7.2.8.2 The WidgetDescriptorCollection class

	7.3 Configuration and setting APIs
	7.3.1 The application/oipfConfiguration embedded object
	7.3.1.1 Properties
	7.3.1.2 Events

	7.3.2 The Configuration class
	7.3.2.1 Properties
	7.3.2.2 Methods

	7.3.3 The LocalSystem class
	7.3.3.1 Constants
	7.3.3.2 Properties
	7.3.3.3 Methods
	7.3.3.4 Events

	7.3.4 The NetworkInterface class
	7.3.4.1 Properties

	7.3.5 The AVOutput class
	7.3.5.1 Properties
	7.3.5.2 Events

	7.3.6 The NetworkInterfaceCollection class
	7.3.7 The AVOutputCollection class
	7.3.8 The TunerCollection class
	7.3.9 The Tuner class
	7.3.9.1 Properties

	7.3.10 The SignalInfo class
	7.3.10.1 Properties

	7.3.11 The LNBInfo class
	7.3.11.1 Constants
	7.3.11.2 Properties

	7.3.12 The StartupInformation class
	7.3.12.1 Properties

	7.4 Content download APIs
	7.4.1 The application/oipfDownloadTrigger embedded object
	7.4.1.1 Methods

	7.4.2 Extensions to application/oipfDownloadTrigger
	7.4.3 The application/oipfDownloadManager embedded object
	7.4.3.1 State diagram for the application/oipfDownloadManager object
	7.4.3.2 Properties
	7.4.3.3 Methods
	7.4.3.4 Events
	7.4.3.5 Constants

	7.4.4 The Download class
	7.4.4.1 Properties

	7.4.5 The DownloadCollection class
	7.4.6 The DRMControlInformation class
	7.4.6.1 Properties

	7.4.7 The DRMControlInfoCollection class

	7.5 Content On Demand Metadata APIs
	7.5.1 The application/oipfCodManager embedded object
	7.5.1.1 Properties
	7.5.1.2 Events

	7.5.2 The ContentCatalogueCollection class
	7.5.3 The ContentCatalogue class
	7.5.3.1 Properties
	7.5.3.2 Methods

	7.5.4 The ContentCatalogueEvent class
	7.5.5 The CODFolder class
	7.5.5.1 Properties
	7.5.5.2 Methods

	7.5.6 The CODAsset class
	7.5.6.1 Properties
	7.5.6.2 Methods

	7.5.7 The CODService class
	7.5.7.1 Properties
	7.5.7.2 Methods

	7.6 Content Service Protection API
	7.6.1 The application/oipfDrmAgent embedded object
	7.6.1.1 Properties
	7.6.1.2 Methods
	7.6.1.3 Events

	7.7 Gateway Discovery and Control APIs
	7.7.1 The application/oipfGatewayInfo embedded object
	7.7.1.1 Properties
	7.7.1.2 Methods
	7.7.1.3 Events

	7.8 Communication Services APIs
	7.8.1 The application/oipfCommunicationServices embedded object
	7.8.1.1 Constants
	7.8.1.2 Properties
	7.8.1.3 Methods
	7.8.1.4 Events

	7.8.2 Extensions to application/oipfCommunicationServices for presence and messaging services
	7.8.2.1 Properties
	7.8.2.2 Methods
	7.8.2.3 Events

	7.8.3 The UserData class
	7.8.3.1 Properties

	7.8.4 The UserDataCollection class
	7.8.5 The FeatureTag class
	7.8.5.1 Properties

	7.8.6 The FeatureTagCollection class
	7.8.7 The Contact class
	7.8.7.1 Properties

	7.8.8 The ContactCollection class
	7.8.8.1 Methods

	7.8.9 Extensions to application/oipfCommunicationServices for voice telephony services
	7.8.9.1 Properties
	7.8.9.2 Methods
	7.8.9.3 Events

	7.8.10 Extensions to application/oipfCommunicationServices for video telephony services
	7.8.10.1 Methods

	7.8.11 The DeviceInfo class
	7.8.11.1 Properties

	7.8.12 The DeviceInfoCollection class
	7.8.13 The CodecInfo class
	7.8.13.1 Properties

	7.8.14 The CodecInfoCollection class
	7.8.14.1 Methods

	7.9 Parental rating and parental control APIs
	7.9.1 The application/oipfParentalControlManager embedded object
	7.9.1.1 Properties
	7.9.1.2 Methods

	7.9.2 The ParentalRatingScheme class
	7.9.2.1 Properties
	7.9.2.2 Methods

	7.9.3 The ParentalRatingSchemeCollection class
	7.9.3.1 Methods

	7.9.4 The ParentalRating class
	7.9.4.1 Properties

	7.9.5 The ParentalRatingCollection class
	7.9.5.1 Methods

	7.10 Scheduled Recording APIs
	7.10.1 The application/oipfRecordingScheduler embedded object
	7.10.1.1 Methods

	7.10.2 The ScheduledRecording class
	7.10.2.1 Constants
	7.10.2.2 Properties

	7.10.3 The ScheduledRecordingCollection class
	7.10.4 Extension to application/oipfRecordingScheduler for control of recordings
	7.10.4.1 Properties
	7.10.4.2 Methods
	7.10.4.3 Events

	7.10.5 The Recording class
	7.10.5.1 Properties

	7.10.6 The RecordingCollection class
	7.10.7 The PVREvent class
	7.10.8 The Bookmark class
	7.10.8.1 Properties

	7.10.9 The BookmarkCollection class
	7.10.9.1 Methods

	7.11 Remote Management APIs
	7.11.1 The application/oipfRemoteManagement embedded object
	7.11.1.1 Properties
	7.11.1.2 Methods
	7.11.1.3 Events

	7.12 Metadata APIs
	7.12.1 The application/oipfSearchManager embedded object
	7.12.1.1 Properties
	7.12.1.2 Events
	7.12.1.3 Methods

	7.12.2 The MetadataSearch class
	7.12.2.1 Properties
	7.12.2.2 Methods

	7.12.3 The Query class
	7.12.3.1 Properties
	7.12.3.2 Methods

	7.12.4 The SearchResults class
	7.12.4.1 Properties
	7.12.4.2 Methods

	7.12.5 The MetadataSearchEvent class
	7.12.6 The MetadataUpdateEvent class

	7.13 Scheduled content and hybrid tuner APIs
	7.13.1 The video/broadcast embedded object
	7.13.1.1 State diagram for video/broadcast objects
	7.13.1.2 Properties
	7.13.1.3 Methods
	7.13.1.4 Events
	7.13.1.5 Styling

	7.13.2 Extensions to video/broadcast for recording and time-shift
	7.13.2.1 Constants
	7.13.2.2 Properties
	7.13.2.3 Methods
	7.13.2.4 Events

	7.13.3 Extensions to video/broadcast for access to EIT p/f
	7.13.3.1 Events

	7.13.4 Extensions to video/broadcast for playback of selected components
	7.13.5 Extensions to video/broadcast for parental ratings errors
	7.13.5.1 Events

	7.13.6 Extensions to video/broadcast for DRM rights errors
	7.13.7 Extensions to video/broadcast for current channel information
	7.13.7.1 Properties

	7.13.8 Extensions to video/broadcast for creating channel lists from SD&S fragments
	7.13.9 The ChannelConfig class
	7.13.9.1 Properties
	7.13.9.2 Methods
	7.13.9.3 Events

	7.13.10 The ChannelList class
	7.13.10.1 Methods

	7.13.11 The Channel class
	7.13.11.1 Constants
	7.13.11.2 Properties
	7.13.11.3 Metadata extensions to Channel
	7.13.11.3.1 Properties
	7.13.11.3.2 Methods

	7.13.12 The FavouriteListCollection class
	7.13.12.1 Methods
	7.13.12.2 Extensions to FavouriteListCollection

	7.13.13 The FavouriteList class
	7.13.13.1 Properties
	7.13.13.2 Methods
	7.13.13.3 Extensions to FavouriteList

	7.13.14 Extensions to video/broadcast for channel scan
	7.13.15 The ChannelScanEvent class
	7.13.16 The ChannelScanOptions class
	7.13.16.1 Properties

	7.13.17 The ChannelScanParameters class
	7.13.18 The DVBTChannelScanParameters class
	7.13.19 The DVBSChannelScanParameters class
	7.13.19.1 Properties

	7.13.20 The DVBCChannelScanParameters class
	7.13.20.1 Properties

	7.13.21 Extensions to video/broadcast for synchronization
	7.13.21.1 The StreamEvent class

	7.13.22 The ATSCTChannelScanParameters class
	7.13.22.1 Properties

	7.14 Media playback APIs
	7.14.1 The A/V Control object
	7.14.1.1 State diagram for A/V Control objects
	7.14.1.2 Using an A/V Control object to play streaming content
	7.14.1.3 Using an A/V Control object to play downloaded content
	7.14.1.4 Using an A/V Control object to play recorded content
	7.14.1.5 Using the A/V Control object to play content fragments
	7.14.1.6 User Input and the A/V Control object

	7.14.2 Extensions to A/V Control object for playback through Content-Access Streaming Descriptor
	7.14.3 Extensions to A/V Control object for trickmodes
	7.14.3.1 Properties
	7.14.3.2 Events

	7.14.4 Extensions to A/V Control object for playback of selected components
	7.14.5 Extensions to A/V Control object for parental rating errors
	7.14.5.1 Events

	7.14.6 Extensions to A/V Control object for DRM rights errors
	7.14.7 Extensions to A/V Control object for playing media objects
	7.14.8 Extensions to A/V Control object for UI feedback of buffering A/V content
	7.14.8.1 Properties
	7.14.8.2 Methods
	7.14.8.3 Events

	7.14.9 DOM events for A/V Control object
	7.14.10 Playback of memory audio
	7.14.10.1 Usage of CE-HTML tags
	7.14.10.2 Usage of the DOM interface
	7.14.10.3 Example usage (Informative)

	7.14.11 Extensions to A/V Control object for media queuing
	7.14.11.1 URI support and the queue method
	7.14.11.2 Implementation Requirements on the Queue Method

	7.14.12 Extensions to A/V Control object for volume control
	7.14.12.1 Methods

	7.14.13 Extensions to A/V Control object for resource management
	7.14.13.1 Constants
	7.14.13.2 Properties

	7.15 Miscellaneous APIs
	7.15.1 The application/oipfMDTF embedded object
	7.15.1.1 Properties
	7.15.1.2 Methods
	7.15.1.3 Events

	7.15.2 The application/oipfStatusView embedded object
	7.15.2.1 Overview of download status
	7.15.2.1.1 Methods

	7.15.2.2 Overview of recordings

	7.15.3 The application/oipfCapabilities embedded object
	7.15.3.1 Properties
	7.15.3.2 Methods

	7.15.4 The Navigator class
	7.15.5 Debug print API

	7.16 Shared Utility classes and features
	7.16.1 Base collections
	7.16.1.1 The StringCollection class
	7.16.1.2 The IntegerCollection class

	7.16.2 The Programme class
	7.16.2.1 Constants
	7.16.2.2 Properties
	7.16.2.3 Metadata extensions to Programme
	7.16.2.3.1 Properties
	7.16.2.3.2 Methods

	7.16.2.4 DVB-SI extensions to Programme
	7.16.2.5 Recording extensions to Programme

	7.16.3 The ProgrammeCollection class
	7.16.4 The DiscInfo class
	7.16.4.1 Properties

	7.16.5 Extensions for playback of selected media components
	7.16.5.1 Media playback extensions
	7.16.5.1.1 Constants
	7.16.5.1.2 Properties
	7.16.5.1.3 Methods
	7.16.5.1.4 Events

	7.16.5.2 The AVComponent class
	7.16.5.2.1 Properties

	7.16.5.3 The AVVideoComponent class
	7.16.5.3.1 Properties

	7.16.5.4 The AVAudioComponent class
	7.16.5.4.1 Properties

	7.16.5.5 The AVSubtitleComponent class
	7.16.5.5.1 Properties

	7.16.5.6 The AVComponentCollection class

	7.16.6 Additional support for protected content

	7.17 DLNA RUI Remote Control Function APIs
	7.17.1 The application/oipfRemoteControlFunction embedded object
	7.17.1.1 Constants
	7.17.1.2 Properties
	7.17.1.3 Methods
	7.17.1.4 Events

	8 System integration aspects
	8.1 HTTP Protocol
	8.1.1 HTTP User-Agent header
	8.1.2 HTTP X-OITF-RCF-User-Agent header

	8.2 Mapping from APIs to Protocols
	8.2.1 CoD Download Over HTTP
	8.2.2 CoD Unicast Streaming with SIP Session Management
	8.2.3 Scheduled Content Multicast Streaming with SIP Session Management
	8.2.3.1 Conveyance of channel list
	8.2.3.2 Switching channels
	8.2.3.3 End broadcast service
	8.2.3.4 Network timeshift of broadcast service

	8.2.4 Communication Services with SIP Session Management
	8.2.5 CoD Unicast Streaming over RTP and HTTP
	8.2.5.1 General
	8.2.5.2 CoD Media Queuing

	8.2.6 Scheduled content Multicast Streaming
	8.2.6.1 Conveyance Of Channel List
	8.2.6.2 Switching Channels
	8.2.6.3 End broadcast service
	8.2.6.4 Network timeshift of broadcast services

	8.3 URI Schemes and their usage
	8.3.1 Media Fragments Support

	8.4 Mapping from APIs to Content Formats
	8.4.1 Character Conversion
	8.4.2 AVComponent
	8.4.3 Channel
	8.4.4 Programme, ScheduledRecording, Recording and Download
	8.4.5 Exposing Audio Description streams as AVComponent objects
	8.4.6 HTML5 Media Element Mapping

	8.5 DLNA RUI Remote Control Function implementation
	8.5.1 Relationship between DAE application and control UI
	8.5.2 XML UI Listing Provisioning
	8.5.3 Retrieving the Control UI
	8.5.4 Receiving and responding a message between the control UI in the Remote Control Device and OITF
	8.5.5 Notification to the Remote Control Device
	8.5.6 Handling Multiple DAE applications and Multiple Remote Control Devices

	9 Capabilities
	9.1 Minimum DAE capability requirements
	9.1.1 SSL/TTLS Requirements
	9.1.1.1 SSL/TLS Support
	9.1.1.2 Cipher Suites
	9.1.1.3 Root Certificates

	9.2 Default UI profiles
	9.3 Client capability description
	9.3.1 Tuner/broadcast capability indication
	9.3.2 Broadcast content over IP capability indication
	9.3.3 PVR capability indication
	9.3.4 Download CoD capability indication
	9.3.5 Parental ratings
	9.3.6 Extended A/V API support
	9.3.7 OITF Metadata API support
	9.3.8 OITF Configuration API support
	9.3.9 Communication Services API Support
	9.3.10 DRM capability indication
	9.3.11 Media profile capability indication
	9.3.12 Remote diagnostics support
	9.3.13 SVG
	9.3.14 Third party notification support
	9.3.15 Multicast Delivery Terminating Function support
	9.3.16 Other capability extensions
	9.3.17 HTML5 video
	9.3.18 DLNA RUI Remote Control Function support
	9.3.19 Power Consumption
	9.3.20 Widgets
	9.3.21 Buffer control of AV content playback API support
	9.3.22 Temporal Clipping
	9.3.23 Capability Elements from other schemas
	9.3.24 Pointer support

	10 Security
	10.1 Application / Service Security
	10.1.1 OITF requirements
	10.1.2 Server requirements
	10.1.3 Specific security requirements for privileged JavaScript APIs
	10.1.3.1 Security requirements for tuner control and lineup
	10.1.3.1.1 Security requirements for exposure of the tuner channel lineup
	10.1.3.1.2 Security requirements for tuner control

	10.1.3.2 Security requirements for recording
	10.1.3.3 Security requirements for content download functionality
	10.1.3.4 Security requirements for DRM related functionality
	10.1.3.5 Security requirements for IMS functionality
	10.1.3.6 Security requirements for metadata processing functionality
	10.1.3.7 Security requirements for configuration and settings functionality
	10.1.3.8 Security requirements for APIs for OITFs under the control of a service provider
	10.1.3.9 Security requirements for remote diagnostics and management API
	10.1.3.10 Security requirements for parental control manager

	10.1.4 Permission names
	10.1.5 Loading documents from different domains

	10.2 User Authentication
	10.3 DLNA RUI Remote Control

	11 DAE Widgets
	11.1 Widgets Packaging and Configuration
	11.2 Access Request
	11.3 Widget Interface
	11.4 Digital Signature

	12 Performance
	12.1 Graphics Performance
	12.1.1 Introduction (informative)
	12.1.2 Performance Levels
	12.1.3 Minimum 2D Graphics Performance
	12.1.4 Minimum 3D Graphics Performance
	12.1.5 Minimum Canvas Performance
	12.1.6 Minimum WebGL Performance
	12.1.7 Performance Measurement

