⏱️ How To Measure UX (https://lnkd.in/e5ueDtZY), a practical guide on how to use UX benchmarking, SUS, SUPR-Q, UMUX-LITE, CES, UEQ to eliminate bias and gather statistically reliable results — with useful templates and resources. By Roman Videnov. Measuring UX is mostly about showing cause and effect. Of course, management wants to do more of what has already worked — and it typically wants to see ROI > 5%. But the return is more than just increased revenue. It’s also reduced costs, expenses and mitigated risk. And UX is an incredibly affordable yet impactful way to achieve it. Good design decisions are intentional. They aren’t guesses or personal preferences. They are deliberate and measurable. Over the last years, I’ve been setting ups design KPIs in teams to inform and guide design decisions. Here are some examples: 1. Top tasks success > 80% (for critical tasks) 2. Time to complete top tasks < 60s (for critical tasks) 3. Time to first success < 90s (for onboarding) 4. Time to candidates < 120s (nav + filtering in eCommerce) 5. Time to top candidate < 120s (for feature comparison) 6. Time to hit the limit of free tier < 7d (for upgrades) 7. Presets/templates usage > 80% per user (to boost efficiency) 8. Filters used per session > 5 per user (quality of filtering) 9. Feature adoption rate > 80% (usage of a new feature per user) 10. Time to pricing quote < 2 weeks (for B2B systems) 11. Application processing time < 2 weeks (online banking) 12. Default settings correction < 10% (quality of defaults) 13. Search results quality > 80% (for top 100 most popular queries) 14. Service desk inquiries < 35/week (poor design → more inquiries) 15. Form input accuracy ≈ 100% (user input in forms) 16. Time to final price < 45s (for eCommerce) 17. Password recovery frequency < 5% per user (for auth) 18. Fake email frequency < 2% (for email newsletters) 19. First contact resolution < 85% (quality of service desk replies) 20. “Turn-around” score < 1 week (frustrated users → happy users) 21. Environmental impact < 0.3g/page request (sustainability) 22. Frustration score < 5% (AUS + SUS/SUPR-Q + Lighthouse) 23. System Usability Scale > 75 (overall usability) 24. Accessible Usability Scale (AUS) > 75 (accessibility) 25. Core Web Vitals ≈ 100% (performance) Each team works with 3–4 local design KPIs that reflects the impact of their work, and 3–4 global design KPIs mapped against touchpoints in a customer journey. Search team works with search quality score, onboarding team works with time to success, authentication team works with password recovery rate. What gets measured, gets better. And it gives you the data you need to monitor and visualize the impact of your design work. Once it becomes a second nature of your process, not only will you have an easier time for getting buy-in, but also build enough trust to boost UX in a company with low UX maturity. [more in the comments ↓] #ux #metrics
UX Performance Benchmarking
Explore top LinkedIn content from expert professionals.
Summary
UX performance benchmarking is the process of measuring how well a digital product supports users in achieving their goals using standardized metrics, allowing teams to track progress, spot issues, and compare experiences across products. This approach transforms gut feelings about design into clear evidence by focusing on user success, speed, trust, and satisfaction at every step of the user journey.
- Set clear measures: Choose a handful of straightforward benchmarks—like task completion rates, speed to success, or error frequency—for each part of the user experience, so you always know what matters most.
- Track real usage: Pair performance numbers with observations and user feedback to see not just what users do, but also how they feel and why they interact that way.
- Adapt for context: Customize your metrics to each feature or user group, especially for new technologies like AI, to ensure you’re tracking what actually matters for your product and audience.
-
-
How well does your product actually work for users? That’s not a rhetorical question, it’s a measurement challenge. No matter the interface, users interact with it to achieve something. Maybe it’s booking a flight, formatting a document, or just heating up dinner. These interactions aren’t random. They’re purposeful. And every purposeful action gives you a chance to measure how well the product supports the user’s goal. This is the heart of performance metrics in UX. Performance metrics give structure to usability research. They show what works, what doesn’t, and how painful the gaps really are. Here are five you should be using: - Task Success This one’s foundational. Can users complete their intended tasks? It sounds simple, but defining success upfront is essential. You can track it in binary form (yes or no), or include gradations like partial success or help-needed. That nuance matters when making design decisions. - Time-on-Task Time is a powerful, ratio-level metric - but only if measured and interpreted correctly. Use consistent methods (screen recording, auto-logging, etc.) and always report medians and ranges. A task that looks fast on average may hide serious usability issues if some users take much longer. - Errors Errors tell you where users stumble, misread, or misunderstand. But not all errors are equal. Classify them by type and severity. This helps identify whether they’re minor annoyances or critical failures. Be intentional about what counts as an error and how it’s tracked. - Efficiency Usability isn’t just about outcomes - it’s also about effort. Combine success with time and steps taken to calculate task efficiency. This reveals friction points that raw success metrics might miss and helps you compare across designs or user segments. - Learnability Some tasks become easier with repetition. If your product is complex or used repeatedly, measure how performance improves over time. Do users get faster, make fewer errors, or retain how to use features after a break? Learnability is often overlooked - but it’s key for onboarding and retention. The value of performance metrics is not just in the data itself, but in how it informs your decisions. These metrics help you prioritize fixes, forecast impact, and communicate usability clearly to stakeholders. But don’t stop at the numbers. Performance data tells you what happened. Pair it with observational and qualitative insights to understand why - and what to do about it. That’s how you move from assumptions to evidence. From usability intuition to usability impact. Adapted from Measuring the User Experience: Collecting, Analyzing, and Presenting UX Metrics by Bill Albert and Tom Tullis (2022).
-
AI changes how we measure UX. We’ve been thinking and iterating on how we track user experiences with AI. In our open Glare framework, we use a mix of attitudinal, behavioral, and performance metrics. AI tools open the door to customizing metrics based on how people use each experience. I’d love to hear who else is exploring this. To measure UX in AI tools, it helps to follow the user journey and match the right metrics to each step. Here's a simple way to break it down: 1. Before using the tool Start by understanding what users expect and how confident they feel. This gives you a sense of their goals and trust levels. 2. While prompting Track how easily users explain what they want. Look at how much effort it takes and whether the first result is useful. 3. While refining the output Measure how smoothly users improve or adjust the results. Count retries, check how well they understand the output, and watch for moments when the tool really surprises or delights them. 4. After seeing the results Check if the result is actually helpful. Time-to-value and satisfaction ratings show whether the tool delivered on its promise. 5. After the session ends See what users do next. Do they leave, return, or keep using it? This helps you understand the lasting value of the experience. We need sharper ways to measure how people use AI. Clicks can’t tell the whole story. But getting this data is not easy. What matters is whether the experience builds trust, sparks creativity, and delivers something users feel good about. These are the signals that show us if the tool is working, not just technically, but emotionally and practically. How are you thinking about this? #productdesign #uxmetrics #productdiscovery #uxresearch
-
💎 Overview of 70+ UX Metrics Struggling to choose the right metric for your UX task at hand? MeasuringU maps out 70+ UX metrics across task and study levels — from time-on-task and SUS to eye tracking and NPS (https://lnkd.in/dhw6Sh8u) 1️⃣ Task-Level Metrics Focus: Directly measure how users perform tasks (actions + perceptions during task execution). Use Case: Usability testing, feature validation, UX benchmarking. 🟢 Objective Task-Based Action Metrics These measure user performance outcomes. Effectiveness: Completion, Findability, Errors Efficiency: Time on Task, Clicks / Interactions 🟢 Behavioral & Physiological Metrics These reflect user attention, emotion, and mental load, often measured via sensors or tracking tools. Visual Attention: Eye Tracking Dwell Time, Fixation Count, Time to First Fixation Emotional Reaction: Facial Coding, HR (heart rate), EEG (brainwave activity) Mental Effort: Tapping (as proxy for cognitive load) 2️⃣ Task-Level Attitudinal Metrics Focus: How users feel during or after a task. Use Case: Post-task questionnaires, usability labs, perception analysis. 🟢 Ease / Perception: Single Ease Question (SEQ), After Scenario Questionnaire (ASQ), Ease scale 🟢 Confidence: Self-reported Confidence score 🟢 Workload / Mental Effort: NASA Task Load Index (TLX), Subjective Mental Effort Questionnaire (SMEQ) 3️⃣ Combined Task-Level Metrics Focus: Composite metrics that combine efficiency, effectiveness, and ease. Use Case: Comparative usability studies, dashboards, standardized testing. Efficiency × Effectiveness → Efficiency Ratio Efficiency × Effectiveness × Ease → Single Usability Metric (SUM) Confidence × Effectiveness → Disaster Metric 4️⃣ Study-Level Attitudinal Metrics Focus: User attitudes about a product after use or across time. Use Case: Surveys, product-market fit tests, satisfaction tracking. 🟢 Satisfaction Metrics: Overall Satisfaction, Customer Experience Index (CXi) 🟢 Loyalty Metrics: Net Promoter Score (NPS), Likelihood to Recommend, Product-Market Fit (PMF) 🟢 Awareness / Brand Perception: Brand Awareness, Favorability, Brand Trust 🟢 Usability / Usefulness: System Usability Scale (SUS) 5️⃣ Delight & Trust Metrics Focus: Measure positive emotions and confidence in the interface. Use Case: Branding, premium experiences, trust validation. Top-Two Box (e.g. “Very Satisfied” or “Very Likely to Recommend”) SUPR-Q Trust Modified System Trust Scale (MST) 6️⃣ Visual Branding Metrics Focus: How users perceive visual design and layout. Use Case: UI testing, branding studies. SUPR-Q Appearance Perceived Website Clutter 7️⃣ Special-Purpose Study-Level Metrics Focus: Custom metrics tailored to specific domains or platforms. Use Case: Gaming, mobile apps, customer support. 🟢 Customer Service: Customer Effort Score (CES), SERVQUAL (Service Quality) 🟢 Gaming: GUESS (Game User Experience Satisfaction Scale) #UX #design #productdesign #measure